zulip/zerver/lib/validator.py

797 lines
25 KiB
Python
Raw Normal View History

"""
This module sets up a scheme for validating that arbitrary Python
objects are correctly typed. It is totally decoupled from Django,
composable, easily wrapped, and easily extended.
A validator takes two parameters--var_name and val--and raises an
error if val is not the correct type. The var_name parameter is used
to format error messages. Validators return the validated value when
there are no errors.
Example primitive validators are check_string, check_int, and check_bool.
Compound validators are created by check_list and check_dict. Note that
those functions aren't directly called for validation; instead, those
functions are called to return other functions that adhere to the validator
contract. This is similar to how Python decorators are often parameterized.
The contract for check_list and check_dict is that they get passed in other
validators to apply to their items. This allows you to build up validators
for arbitrarily complex validators. See ValidatorTestCase for example usage.
A simple example of composition is this:
check_list(check_string)('my_list', ['a', 'b', 'c'])
To extend this concept, it's simply a matter of writing your own validator
for any particular type of object.
"""
import re
from dataclasses import dataclass
from datetime import datetime, timezone
from typing import (
Any,
Callable,
Collection,
Container,
Dict,
Iterator,
List,
NoReturn,
Optional,
Set,
Tuple,
TypeVar,
Union,
cast,
overload,
)
import orjson
import zoneinfo
from django.core.exceptions import ValidationError
from django.core.validators import URLValidator, validate_email
from django.utils.translation import gettext as _
api: Add new typed_endpoint decorators. The goal of typed_endpoint is to replicate most features supported by has_request_variables, and to improve on top of it. There are some unresolved issues that we don't plan to work on currently. For example, typed_endpoint does not support ignored_parameters_supported for 400 responses, and it does not run validators on path-only arguments. Unlike has_request_variables, typed_endpoint supports error handling by processing validation errors from Pydantic. Most features supported by has_request_variables are supported by typed_endpoint in various ways. To define a function, use a syntax like this with Annotated if there is any metadata you want to associate with a parameter, do note that parameters that are not keyword-only are ignored from the request: ``` @typed_endpoint def view( request: HttpRequest, user_profile: UserProfile, *, foo: Annotated[int, ApiParamConfig(path_only=True)], bar: Json[int], other: Annotated[ Json[int], ApiParamConfig( whence="lorem", documentation_status=NTENTIONALLY_UNDOCUMENTED ) ] = 10, ) -> HttpResponse: .... ``` There are also some shorthands for the commonly used annotated types, which are encouraged when applicable for better readability and less typing: ``` WebhookPayload = Annotated[Json[T], ApiParamConfig(argument_type_is_body=True)] PathOnly = Annotated[T, ApiParamConfig(path_only=True)] ``` Then the view function above can be rewritten as: ``` @typed_endpoint def view( request: HttpRequest, user_profile: UserProfile, *, foo: PathOnly[int], bar: Json[int], other: Annotated[ Json[int], ApiParamConfig( whence="lorem", documentation_status=INTENTIONALLY_UNDOCUMENTED ) ] = 10, ) -> HttpResponse: .... ``` There are some intentional restrictions: - A single parameter cannot have more than one ApiParamConfig - Path-only parameters cannot have default values - argument_type_is_body is incompatible with whence - Arguments of name "request", "user_profile", "args", and "kwargs" and etc. are ignored by typed_endpoint. - positional-only arguments are not supported by typed_endpoint. Only keyword-only parameters are expected to be parsed from the request. - Pydantic's strict mode is always enabled, because we don't want to coerce input parsed from JSON into other types unnecessarily. - Using strict mode all the time also means that we should always use Json[int] instead of int, because it is only possible for the request to have data of type str, and a type annotation of int will always reject such data. typed_endpoint's handling of ignored_parameters_unsupported is mostly identical to that of has_request_variables.
2023-07-28 08:34:04 +02:00
from pydantic import ValidationInfo, model_validator
from pydantic.functional_validators import ModelWrapValidatorHandler
from typing_extensions import override
from zerver.lib.exceptions import InvalidJSONError, JsonableError
from zerver.lib.timezone import canonicalize_timezone
from zerver.lib.types import ProfileFieldData, Validator
ResultT = TypeVar("ResultT")
def check_anything(var_name: str, val: object) -> object:
return val
def check_string(var_name: str, val: object) -> str:
2017-09-27 10:06:17 +02:00
if not isinstance(val, str):
raise ValidationError(_("{var_name} is not a string").format(var_name=var_name))
return val
def check_required_string(var_name: str, val: object) -> str:
s = check_string(var_name, val)
if not s.strip():
raise ValidationError(_("{item} cannot be blank.").format(item=var_name))
return s
def check_string_in(possible_values: Container[str]) -> Validator[str]:
def validator(var_name: str, val: object) -> str:
s = check_string(var_name, val)
if s not in possible_values:
raise ValidationError(_("Invalid {var_name}").format(var_name=var_name))
return s
return validator
def check_short_string(var_name: str, val: object) -> str:
return check_capped_string(50)(var_name, val)
def check_capped_string(max_length: int) -> Validator[str]:
def validator(var_name: str, val: object) -> str:
s = check_string(var_name, val)
if len(s) > max_length:
raise ValidationError(
_("{var_name} is too long (limit: {max_length} characters)").format(
var_name=var_name,
max_length=max_length,
)
)
return s
return validator
def check_string_fixed_length(length: int) -> Validator[str]:
def validator(var_name: str, val: object) -> str:
s = check_string(var_name, val)
if len(s) != length:
raise ValidationError(
_("{var_name} has incorrect length {length}; should be {target_length}").format(
var_name=var_name,
target_length=length,
length=len(s),
)
)
return s
return validator
def check_long_string(var_name: str, val: object) -> str:
return check_capped_string(500)(var_name, val)
def check_timezone(var_name: str, val: object) -> str:
s = check_string(var_name, val)
try:
zoneinfo.ZoneInfo(canonicalize_timezone(s))
except (ValueError, zoneinfo.ZoneInfoNotFoundError):
raise ValidationError(
_("{var_name} is not a recognized time zone").format(var_name=var_name)
)
return s
def check_date(var_name: str, val: object) -> str:
if not isinstance(val, str):
raise ValidationError(_("{var_name} is not a string").format(var_name=var_name))
try:
if (
datetime.strptime(val, "%Y-%m-%d").replace(tzinfo=timezone.utc).strftime("%Y-%m-%d")
!= val
):
raise ValidationError(_("{var_name} is not a date").format(var_name=var_name))
except ValueError:
raise ValidationError(_("{var_name} is not a date").format(var_name=var_name))
return val
def check_int(var_name: str, val: object) -> int:
if not isinstance(val, int):
raise ValidationError(_("{var_name} is not an integer").format(var_name=var_name))
return val
def check_int_in(possible_values: List[int]) -> Validator[int]:
"""
Assert that the input is an integer and is contained in `possible_values`. If the input is not in
`possible_values`, a `ValidationError` is raised containing the failing field's name.
"""
def validator(var_name: str, val: object) -> int:
n = check_int(var_name, val)
if n not in possible_values:
raise ValidationError(_("Invalid {var_name}").format(var_name=var_name))
return n
return validator
def check_int_range(low: int, high: int) -> Validator[int]:
# low and high are both treated as valid values
def validator(var_name: str, val: object) -> int:
n = check_int(var_name, val)
if n < low:
raise ValidationError(_("{var_name} is too small").format(var_name=var_name))
if n > high:
raise ValidationError(_("{var_name} is too large").format(var_name=var_name))
return n
return validator
def check_float(var_name: str, val: object) -> float:
2017-03-24 05:23:41 +01:00
if not isinstance(val, float):
raise ValidationError(_("{var_name} is not a float").format(var_name=var_name))
return val
2017-03-24 05:23:41 +01:00
def check_bool(var_name: str, val: object) -> bool:
if not isinstance(val, bool):
raise ValidationError(_("{var_name} is not a boolean").format(var_name=var_name))
return val
def check_color(var_name: str, val: object) -> str:
s = check_string(var_name, val)
valid_color_pattern = re.compile(r"^#([a-fA-F0-9]{3,6})$")
matched_results = valid_color_pattern.match(s)
if not matched_results:
raise ValidationError(
_("{var_name} is not a valid hex color code").format(var_name=var_name)
)
return s
def check_none_or(sub_validator: Validator[ResultT]) -> Validator[Optional[ResultT]]:
def f(var_name: str, val: object) -> Optional[ResultT]:
if val is None:
return val
else:
return sub_validator(var_name, val)
return f
def check_list(
sub_validator: Validator[ResultT], length: Optional[int] = None
) -> Validator[List[ResultT]]:
def f(var_name: str, val: object) -> List[ResultT]:
if not isinstance(val, list):
raise ValidationError(_("{var_name} is not a list").format(var_name=var_name))
if length is not None and length != len(val):
raise ValidationError(
_("{container} should have exactly {length} items").format(
container=var_name,
length=length,
)
)
for i, item in enumerate(val):
vname = f"{var_name}[{i}]"
valid_item = sub_validator(vname, item)
assert item is valid_item # To justify the unchecked cast below
return cast(List[ResultT], val)
return f
# https://zulip.readthedocs.io/en/latest/testing/mypy.html#using-overload-to-accurately-describe-variations
@overload
def check_dict(
required_keys: Collection[Tuple[str, Validator[object]]] = [],
optional_keys: Collection[Tuple[str, Validator[object]]] = [],
*,
_allow_only_listed_keys: bool = False,
) -> Validator[Dict[str, object]]: ...
@overload
def check_dict(
required_keys: Collection[Tuple[str, Validator[ResultT]]] = [],
optional_keys: Collection[Tuple[str, Validator[ResultT]]] = [],
*,
value_validator: Validator[ResultT],
_allow_only_listed_keys: bool = False,
) -> Validator[Dict[str, ResultT]]: ...
def check_dict(
required_keys: Collection[Tuple[str, Validator[ResultT]]] = [],
optional_keys: Collection[Tuple[str, Validator[ResultT]]] = [],
*,
value_validator: Optional[Validator[ResultT]] = None,
_allow_only_listed_keys: bool = False,
) -> Validator[Dict[str, ResultT]]:
def f(var_name: str, val: object) -> Dict[str, ResultT]:
if not isinstance(val, dict):
raise ValidationError(_("{var_name} is not a dict").format(var_name=var_name))
for k in val:
check_string(f"{var_name} key", k)
for k, sub_validator in required_keys:
if k not in val:
raise ValidationError(
_("{key_name} key is missing from {var_name}").format(
key_name=k,
var_name=var_name,
)
)
vname = f'{var_name}["{k}"]'
sub_validator(vname, val[k])
for k, sub_validator in optional_keys:
if k in val:
vname = f'{var_name}["{k}"]'
sub_validator(vname, val[k])
if value_validator:
for key in val:
vname = f"{var_name} contains a value that"
valid_value = value_validator(vname, val[key])
assert val[key] is valid_value # To justify the unchecked cast below
if _allow_only_listed_keys:
required_keys_set = {x[0] for x in required_keys}
optional_keys_set = {x[0] for x in optional_keys}
delta_keys = set(val.keys()) - required_keys_set - optional_keys_set
if len(delta_keys) != 0:
raise ValidationError(
_("Unexpected arguments: {keys}").format(keys=", ".join(delta_keys))
)
return cast(Dict[str, ResultT], val)
return f
def check_dict_only(
required_keys: Collection[Tuple[str, Validator[ResultT]]],
optional_keys: Collection[Tuple[str, Validator[ResultT]]] = [],
) -> Validator[Dict[str, ResultT]]:
return cast(
Validator[Dict[str, ResultT]],
check_dict(required_keys, optional_keys, _allow_only_listed_keys=True),
)
def check_union(allowed_type_funcs: Collection[Validator[ResultT]]) -> Validator[ResultT]:
"""
Use this validator if an argument is of a variable type (e.g. processing
properties that might be strings or booleans).
`allowed_type_funcs`: the check_* validator functions for the possible data
types for this variable.
"""
def enumerated_type_check(var_name: str, val: object) -> ResultT:
for func in allowed_type_funcs:
try:
return func(var_name, val)
except ValidationError:
pass
raise ValidationError(_("{var_name} is not an allowed_type").format(var_name=var_name))
return enumerated_type_check
def equals(expected_val: ResultT) -> Validator[ResultT]:
def f(var_name: str, val: object) -> ResultT:
if val != expected_val:
raise ValidationError(
_("{variable} != {expected_value} ({value} is wrong)").format(
variable=var_name,
expected_value=expected_val,
value=val,
)
)
return cast(ResultT, val)
return f
def validate_login_email(email: str) -> None:
try:
validate_email(email)
except ValidationError as err:
raise JsonableError(str(err.message))
def check_url(var_name: str, val: object) -> str:
# First, ensure val is a string
s = check_string(var_name, val)
# Now, validate as URL
validate = URLValidator()
try:
validate(s)
return s
except ValidationError:
raise ValidationError(_("{var_name} is not a URL").format(var_name=var_name))
def check_capped_url(max_length: int) -> Validator[str]:
def validator(var_name: str, val: object) -> str:
# Ensure val is a string and length of the string does not
# exceed max_length.
s = check_capped_string(max_length)(var_name, val)
# Validate as URL.
validate = URLValidator()
try:
validate(s)
return s
except ValidationError:
raise ValidationError(_("{var_name} is not a URL").format(var_name=var_name))
return validator
def check_external_account_url_pattern(var_name: str, val: object) -> str:
s = check_string(var_name, val)
if s.count("%(username)s") != 1:
raise ValidationError(_("URL pattern must contain '%(username)s'."))
url_val = s.replace("%(username)s", "username")
check_url(var_name, url_val)
return s
def validate_select_field_data(field_data: ProfileFieldData) -> Dict[str, Dict[str, str]]:
"""
This function is used to validate the data sent to the server while
creating/editing choices of the choice field in Organization settings.
"""
validator = check_dict_only(
[
("text", check_required_string),
("order", check_required_string),
]
)
# To create an array of texts of each option
distinct_field_names: Set[str] = set()
for key, value in field_data.items():
if not key.strip():
raise ValidationError(_("'{item}' cannot be blank.").format(item="value"))
valid_value = validator("field_data", value)
assert value is valid_value # To justify the unchecked cast below
distinct_field_names.add(valid_value["text"])
# To show error if the options are duplicate
if len(field_data) != len(distinct_field_names):
raise ValidationError(_("Field must not have duplicate choices."))
return cast(Dict[str, Dict[str, str]], field_data)
def validate_select_field(var_name: str, field_data: str, value: object) -> str:
"""
This function is used to validate the value selected by the user against a
choice field. This is not used to validate admin data.
"""
s = check_string(var_name, value)
field_data_dict = orjson.loads(field_data)
if s not in field_data_dict:
msg = _("'{value}' is not a valid choice for '{field_name}'.")
raise ValidationError(msg.format(value=value, field_name=var_name))
return s
def check_widget_content(widget_content: object) -> Dict[str, Any]:
if not isinstance(widget_content, dict):
raise ValidationError("widget_content is not a dict")
if "widget_type" not in widget_content:
raise ValidationError("widget_type is not in widget_content")
if "extra_data" not in widget_content:
raise ValidationError("extra_data is not in widget_content")
widget_type = widget_content["widget_type"]
extra_data = widget_content["extra_data"]
if not isinstance(extra_data, dict):
raise ValidationError("extra_data is not a dict")
if widget_type == "zform":
if "type" not in extra_data:
raise ValidationError("zform is missing type field")
if extra_data["type"] == "choices":
check_choices = check_list(
check_dict(
[
("short_name", check_string),
("long_name", check_string),
("reply", check_string),
]
),
)
# We re-check "type" here just to avoid it looking
# like we have extraneous keys.
checker = check_dict(
[
("type", equals("choices")),
("heading", check_string),
("choices", check_choices),
]
)
checker("extra_data", extra_data)
return widget_content
raise ValidationError("unknown zform type: " + extra_data["type"])
raise ValidationError("unknown widget type: " + widget_type)
# This should match MAX_IDX in our client widgets. It is somewhat arbitrary.
MAX_IDX = 1000
2021-06-13 17:00:45 +02:00
def validate_poll_data(poll_data: object, is_widget_author: bool) -> None:
check_dict([("type", check_string)])("poll data", poll_data)
assert isinstance(poll_data, dict)
if poll_data["type"] == "vote":
checker = check_dict_only(
[
("type", check_string),
("key", check_string),
("vote", check_int_in([1, -1])),
]
)
checker("poll data", poll_data)
return
if poll_data["type"] == "question":
if not is_widget_author:
raise ValidationError("You can't edit a question unless you are the author.")
checker = check_dict_only(
[
("type", check_string),
("question", check_string),
]
)
checker("poll data", poll_data)
return
if poll_data["type"] == "new_option":
checker = check_dict_only(
[
("type", check_string),
("option", check_string),
("idx", check_int_range(0, MAX_IDX)),
2021-06-13 17:00:45 +02:00
]
)
checker("poll data", poll_data)
return
raise ValidationError(f"Unknown type for poll data: {poll_data['type']}")
def validate_todo_data(todo_data: object, is_widget_author: bool) -> None:
check_dict([("type", check_string)])("todo data", todo_data)
assert isinstance(todo_data, dict)
if todo_data["type"] == "new_task":
checker = check_dict_only(
[
("type", check_string),
("key", check_int_range(0, MAX_IDX)),
("task", check_string),
("desc", check_string),
("completed", check_bool),
]
)
checker("todo data", todo_data)
return
if todo_data["type"] == "strike":
checker = check_dict_only(
[
("type", check_string),
("key", check_string),
]
)
checker("todo data", todo_data)
return
if todo_data["type"] == "new_task_list_title":
if not is_widget_author:
raise ValidationError("You can't edit the task list title unless you are the author.")
checker = check_dict_only(
[
("type", check_string),
("title", check_string),
]
)
checker("todo data", todo_data)
return
raise ValidationError(f"Unknown type for todo data: {todo_data['type']}")
# Converter functions for use with has_request_variables
def to_non_negative_int(var_name: str, s: str, max_int_size: int = 2**32 - 1) -> int:
x = int(s)
if x < 0:
raise ValueError("argument is negative")
if x > max_int_size:
raise ValueError(f"{x} is too large (max {max_int_size})")
return x
def to_float(var_name: str, s: str) -> float:
return float(s)
def to_timezone_or_empty(var_name: str, s: str) -> str:
try:
s = canonicalize_timezone(s)
zoneinfo.ZoneInfo(s)
except (ValueError, zoneinfo.ZoneInfoNotFoundError):
return ""
else:
return s
def to_converted_or_fallback(
sub_converter: Callable[[str, str], ResultT], default: ResultT
) -> Callable[[str, str], ResultT]:
def converter(var_name: str, s: str) -> ResultT:
try:
return sub_converter(var_name, s)
except ValueError:
return default
return converter
def check_string_or_int_list(var_name: str, val: object) -> Union[str, List[int]]:
if isinstance(val, str):
return val
if not isinstance(val, list):
raise ValidationError(
_("{var_name} is not a string or an integer list").format(var_name=var_name)
)
return check_list(check_int)(var_name, val)
def check_string_or_int(var_name: str, val: object) -> Union[str, int]:
if isinstance(val, (str, int)):
return val
raise ValidationError(_("{var_name} is not a string or integer").format(var_name=var_name))
@dataclass
class WildValue:
var_name: str
value: object
@model_validator(mode="wrap")
api: Add new typed_endpoint decorators. The goal of typed_endpoint is to replicate most features supported by has_request_variables, and to improve on top of it. There are some unresolved issues that we don't plan to work on currently. For example, typed_endpoint does not support ignored_parameters_supported for 400 responses, and it does not run validators on path-only arguments. Unlike has_request_variables, typed_endpoint supports error handling by processing validation errors from Pydantic. Most features supported by has_request_variables are supported by typed_endpoint in various ways. To define a function, use a syntax like this with Annotated if there is any metadata you want to associate with a parameter, do note that parameters that are not keyword-only are ignored from the request: ``` @typed_endpoint def view( request: HttpRequest, user_profile: UserProfile, *, foo: Annotated[int, ApiParamConfig(path_only=True)], bar: Json[int], other: Annotated[ Json[int], ApiParamConfig( whence="lorem", documentation_status=NTENTIONALLY_UNDOCUMENTED ) ] = 10, ) -> HttpResponse: .... ``` There are also some shorthands for the commonly used annotated types, which are encouraged when applicable for better readability and less typing: ``` WebhookPayload = Annotated[Json[T], ApiParamConfig(argument_type_is_body=True)] PathOnly = Annotated[T, ApiParamConfig(path_only=True)] ``` Then the view function above can be rewritten as: ``` @typed_endpoint def view( request: HttpRequest, user_profile: UserProfile, *, foo: PathOnly[int], bar: Json[int], other: Annotated[ Json[int], ApiParamConfig( whence="lorem", documentation_status=INTENTIONALLY_UNDOCUMENTED ) ] = 10, ) -> HttpResponse: .... ``` There are some intentional restrictions: - A single parameter cannot have more than one ApiParamConfig - Path-only parameters cannot have default values - argument_type_is_body is incompatible with whence - Arguments of name "request", "user_profile", "args", and "kwargs" and etc. are ignored by typed_endpoint. - positional-only arguments are not supported by typed_endpoint. Only keyword-only parameters are expected to be parsed from the request. - Pydantic's strict mode is always enabled, because we don't want to coerce input parsed from JSON into other types unnecessarily. - Using strict mode all the time also means that we should always use Json[int] instead of int, because it is only possible for the request to have data of type str, and a type annotation of int will always reject such data. typed_endpoint's handling of ignored_parameters_unsupported is mostly identical to that of has_request_variables.
2023-07-28 08:34:04 +02:00
@classmethod
def to_wild_value(
cls,
value: object,
# We bypass the original WildValue handler to customize it
handler: ModelWrapValidatorHandler["WildValue"],
info: ValidationInfo,
) -> "WildValue":
return wrap_wild_value("request", value)
def __bool__(self) -> bool:
return bool(self.value)
@override
def __eq__(self, other: object) -> bool:
return self.value == other
def __len__(self) -> int:
if not isinstance(self.value, (dict, list, str)):
raise ValidationError(
_("{var_name} does not have a length").format(var_name=self.var_name)
)
return len(self.value)
@override
def __str__(self) -> NoReturn:
raise TypeError("cannot convert WildValue to string; try .tame(check_string)")
def _need_list(self) -> NoReturn:
raise ValidationError(_("{var_name} is not a list").format(var_name=self.var_name))
def _need_dict(self) -> NoReturn:
raise ValidationError(_("{var_name} is not a dict").format(var_name=self.var_name))
def __iter__(self) -> Iterator["WildValue"]:
self._need_list()
def __contains__(self, key: str) -> bool:
self._need_dict()
def __getitem__(self, key: Union[int, str]) -> "WildValue":
if isinstance(key, int):
self._need_list()
else:
self._need_dict()
def get(self, key: str, default: object = None) -> "WildValue":
self._need_dict()
def keys(self) -> Iterator[str]:
self._need_dict()
def values(self) -> Iterator["WildValue"]:
self._need_dict()
def items(self) -> Iterator[Tuple[str, "WildValue"]]:
self._need_dict()
def tame(self, validator: Validator[ResultT]) -> ResultT:
return validator(self.var_name, self.value)
class WildValueList(WildValue):
value: List[object]
@override
def __iter__(self) -> Iterator[WildValue]:
for i, item in enumerate(self.value):
yield wrap_wild_value(f"{self.var_name}[{i}]", item)
@override
def __getitem__(self, key: Union[int, str]) -> WildValue:
if not isinstance(key, int):
return super().__getitem__(key)
var_name = f"{self.var_name}[{key!r}]"
try:
item = self.value[key]
except IndexError:
raise ValidationError(_("{var_name} is missing").format(var_name=var_name)) from None
return wrap_wild_value(var_name, item)
class WildValueDict(WildValue):
value: Dict[str, object]
@override
def __contains__(self, key: str) -> bool:
return key in self.value
@override
def __getitem__(self, key: Union[int, str]) -> WildValue:
if not isinstance(key, str):
return super().__getitem__(key)
var_name = f"{self.var_name}[{key!r}]"
try:
item = self.value[key]
except KeyError:
raise ValidationError(_("{var_name} is missing").format(var_name=var_name)) from None
return wrap_wild_value(var_name, item)
@override
def get(self, key: str, default: object = None) -> WildValue:
item = self.value.get(key, default)
if isinstance(item, WildValue):
return item
return wrap_wild_value(f"{self.var_name}[{key!r}]", item)
@override
def keys(self) -> Iterator[str]:
yield from self.value.keys()
@override
def values(self) -> Iterator[WildValue]:
for key, value in self.value.items():
yield wrap_wild_value(f"{self.var_name}[{key!r}]", value)
@override
def items(self) -> Iterator[Tuple[str, WildValue]]:
for key, value in self.value.items():
yield key, wrap_wild_value(f"{self.var_name}[{key!r}]", value)
def wrap_wild_value(var_name: str, value: object) -> WildValue:
if isinstance(value, list):
return WildValueList(var_name, value)
if isinstance(value, dict):
return WildValueDict(var_name, value)
return WildValue(var_name, value)
def to_wild_value(var_name: str, input: str) -> WildValue:
try:
value = orjson.loads(input)
except orjson.JSONDecodeError:
raise InvalidJSONError(_("Malformed JSON"))
return wrap_wild_value(var_name, value)