klipper-dgus/config/example-delta.cfg

132 lines
4.3 KiB
INI
Raw Normal View History

# This file serves as documentation for config parameters of delta
# style printers. One may copy and edit this file to configure a new
# delta printer. Only parameters unique to delta printers are
# described here - see the "example.cfg" file for description of
# common config parameters.
# DO NOT COPY THIS FILE WITHOUT CAREFULLY READING AND UPDATING IT
# FIRST. Incorrectly configured parameters may cause damage.
# The stepper_a section describes the stepper controlling the front
# left tower (at 210 degrees). This section also controls the homing
# parameters (homing_speed, homing_retract_dist) for all towers.
[stepper_a]
step_pin: ar54
dir_pin: ar55
enable_pin: !ar38
step_distance: .01
endstop_pin: ^ar2
homing_speed: 50
position_endstop: 297.05
# Distance (in mm) between the nozzle and the bed when the nozzle is
# in the center of the build area and the endstop triggers. This
# parameter must be provided for stepper_a; for stepper_b and
# stepper_c this parameter defaults to the value specified for
# stepper_a.
arm_length: 333.0
# Length (in mm) of the diagonal rod that connects this tower to the
# print head. This parameter must be provided for stepper_a; for
# stepper_b and stepper_c this parameter defaults to the value
# specified for stepper_a.
#angle:
# This option specifies the angle (in degrees) that the tower is
# at. The default is 210 for stepper_a, 330 for stepper_b, and 90
# for stepper_c.
# The stepper_b section describes the stepper controlling the front
# right tower (at 330 degrees).
[stepper_b]
step_pin: ar60
dir_pin: ar61
enable_pin: !ar56
step_distance: .01
endstop_pin: ^ar15
# The stepper_c section describes the stepper controlling the rear
# tower (at 90 degrees).
[stepper_c]
step_pin: ar46
dir_pin: ar48
enable_pin: !ar62
step_distance: .01
endstop_pin: ^ar19
[extruder]
step_pin: ar26
dir_pin: ar28
enable_pin: !ar24
step_distance: .0022
nozzle_diameter: 0.400
filament_diameter: 1.750
heater_pin: ar10
sensor_type: ATC Semitec 104GT-2
sensor_pin: analog13
control: pid
pid_Kp: 22.2
pid_Ki: 1.08
pid_Kd: 114
min_temp: 0
max_temp: 250
[heater_bed]
heater_pin: ar8
sensor_type: EPCOS 100K B57560G104F
sensor_pin: analog14
control: watermark
min_temp: 0
max_temp: 130
# Print cooling fan (omit section if fan not present).
#[fan]
#pin: ar9
[mcu]
serial: /dev/ttyACM0
pin_map: arduino
[printer]
kinematics: delta
# This option must be "delta" for linear delta printers.
max_velocity: 300
# Maximum velocity (in mm/s) of the toolhead relative to the
# print. This parameter must be specified.
max_accel: 3000
# Maximum acceleration (in mm/s^2) of the toolhead relative to the
# print. This parameter must be specified.
max_z_velocity: 150
# For delta printers this limits the maximum velocity (in mm/s) of
# moves with z axis movement. This setting can be used to reduce the
# maximum speed of up/down moves (which require a higher step rate
# than other moves on a delta printer). The default is to use
# max_velocity for max_z_velocity.
#minimum_z_position: 0
# The minimum Z position that the user may command the head to move
# to. The default is 0.
delta_radius: 174.75
# Radius (in mm) of the horizontal circle formed by the three linear
# axis towers. This parameter may also be calculated as:
# delta_radius = smooth_rod_offset - effector_offset - carriage_offset
# This parameter must be provided.
# The delta_calibrate section enables a DELTA_CALIBRATE extended
# g-code command that can calibrate the tower endstop positions and
# angles.
[delta_calibrate]
radius: 50
# Radius (in mm) of the area that may be probed. This is typically
# the size of the printer bed. This parameter must be provided.
#speed: 50
# The speed (in mm/s) of non-probing moves during the
# calibration. The default is 50.
#horizontal_move_z: 5
# The height (in mm) that the head should be commanded to move to
# just prior to starting a probe operation. The default is 5.
#manual_probe:
# If true, then DELTA_CALIBRATE will perform manual probing. If
# false, then a PROBE command will be run at each probe
# point. Manual probing is accomplished by manually jogging the Z
# position of the print head at each probe point and then issuing a
# NEXT extended g-code command to record the position at that
# point. The default is false if a [probe] config section is present
# and true otherwise.