zulip/zerver/lib/validator.py

437 lines
16 KiB
Python

'''
This module sets up a scheme for validating that arbitrary Python
objects are correctly typed. It is totally decoupled from Django,
composable, easily wrapped, and easily extended.
A validator takes two parameters--var_name and val--and returns an
error if val is not the correct type. The var_name parameter is used
to format error messages. Validators return None when there are no errors.
Example primitive validators are check_string, check_int, and check_bool.
Compound validators are created by check_list and check_dict. Note that
those functions aren't directly called for validation; instead, those
functions are called to return other functions that adhere to the validator
contract. This is similar to how Python decorators are often parameterized.
The contract for check_list and check_dict is that they get passed in other
validators to apply to their items. This allows you to build up validators
for arbitrarily complex validators. See ValidatorTestCase for example usage.
A simple example of composition is this:
check_list(check_string)('my_list', ['a', 'b', 'c']) is None
To extend this concept, it's simply a matter of writing your own validator
for any particular type of object.
'''
import re
import ujson
from django.utils.translation import ugettext as _
from django.conf import settings
from django.core.exceptions import ValidationError
from django.core.validators import validate_email, URLValidator
from typing import Any, Dict, Iterable, Optional, Tuple, cast, List, Callable, TypeVar, \
Set, Union
from datetime import datetime
from zerver.lib.request import JsonableError
from zerver.lib.types import Validator, ProfileFieldData
FuncT = Callable[..., Any]
TypeStructure = TypeVar("TypeStructure")
# The type_structure system is designed to support using the validators in
# test_events.py to create documentation for our event formats.
#
# Ultimately, it should be possible to do this with mypy rather than a
# parallel system.
def set_type_structure(type_structure: TypeStructure) -> Callable[[FuncT], Any]:
def _set_type_structure(func: FuncT) -> FuncT:
if settings.LOG_API_EVENT_TYPES:
func.type_structure = type_structure # type: ignore[attr-defined] # monkey-patching
return func
return _set_type_structure
@set_type_structure("str")
def check_string(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, str):
return _('%s is not a string') % (var_name,)
return None
@set_type_structure("str")
def check_required_string(var_name: str, val: object) -> Optional[str]:
error = check_string(var_name, val)
if error:
return error
val = cast(str, val)
if not val.strip():
return _("{item} cannot be blank.").format(item=var_name)
return None
def check_string_in(possible_values: Union[Set[str], List[str]]) -> Validator:
@set_type_structure("str")
def validator(var_name: str, val: object) -> Optional[str]:
not_str = check_string(var_name, val)
if not_str is not None:
return not_str
if val not in possible_values:
return _("Invalid %s") % (var_name,)
return None
return validator
@set_type_structure("str")
def check_short_string(var_name: str, val: object) -> Optional[str]:
return check_capped_string(50)(var_name, val)
def check_capped_string(max_length: int) -> Validator:
@set_type_structure("str")
def validator(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, str):
return _('%s is not a string') % (var_name,)
if len(val) > max_length:
return _("{var_name} is too long (limit: {max_length} characters)").format(
var_name=var_name, max_length=max_length)
return None
return validator
def check_string_fixed_length(length: int) -> Validator:
@set_type_structure("str")
def validator(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, str):
return _('%s is not a string') % (var_name,)
if len(val) != length:
return _("{var_name} has incorrect length {length}; should be {target_length}").format(
var_name=var_name, target_length=length, length=len(val))
return None
return validator
@set_type_structure("str")
def check_long_string(var_name: str, val: object) -> Optional[str]:
return check_capped_string(500)(var_name, val)
@set_type_structure("date")
def check_date(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, str):
return _('%s is not a string') % (var_name,)
try:
datetime.strptime(val, '%Y-%m-%d')
except ValueError:
return _('%s is not a date') % (var_name,)
return None
@set_type_structure("int")
def check_int(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, int):
return _('%s is not an integer') % (var_name,)
return None
def check_int_in(possible_values: List[int]) -> Validator:
@set_type_structure("int")
def validator(var_name: str, val: object) -> Optional[str]:
not_int = check_int(var_name, val)
if not_int is not None:
return not_int
if val not in possible_values:
return _("Invalid %s") % (var_name,)
return None
return validator
@set_type_structure("float")
def check_float(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, float):
return _('%s is not a float') % (var_name,)
return None
@set_type_structure("bool")
def check_bool(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, bool):
return _('%s is not a boolean') % (var_name,)
return None
@set_type_structure("str")
def check_color(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, str):
return _('%s is not a string') % (var_name,)
valid_color_pattern = re.compile(r'^#([a-fA-F0-9]{3,6})$')
matched_results = valid_color_pattern.match(val)
if not matched_results:
return _('%s is not a valid hex color code') % (var_name,)
return None
def check_none_or(sub_validator: Validator) -> Validator:
if settings.LOG_API_EVENT_TYPES:
type_structure = 'none_or_' + sub_validator.type_structure # type: ignore[attr-defined] # monkey-patching
else:
type_structure = None
@set_type_structure(type_structure)
def f(var_name: str, val: object) -> Optional[str]:
if val is None:
return None
else:
return sub_validator(var_name, val)
return f
def check_list(sub_validator: Optional[Validator], length: Optional[int]=None) -> Validator:
if settings.LOG_API_EVENT_TYPES:
if sub_validator:
type_structure = [sub_validator.type_structure] # type: ignore[attr-defined] # monkey-patching
else:
type_structure = 'list' # type: ignore[assignment] # monkey-patching
else:
type_structure = None # type: ignore[assignment] # monkey-patching
@set_type_structure(type_structure)
def f(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, list):
return _('%s is not a list') % (var_name,)
if length is not None and length != len(val):
return (_('%(container)s should have exactly %(length)s items') %
{'container': var_name, 'length': length})
if sub_validator:
for i, item in enumerate(val):
vname = '%s[%d]' % (var_name, i)
error = sub_validator(vname, item)
if error:
return error
return None
return f
def check_dict(required_keys: Iterable[Tuple[str, Validator]]=[],
optional_keys: Iterable[Tuple[str, Validator]]=[],
value_validator: Optional[Validator]=None,
_allow_only_listed_keys: bool=False) -> Validator:
type_structure = {} # type: Dict[str, Any]
@set_type_structure(type_structure)
def f(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, dict):
return _('%s is not a dict') % (var_name,)
for k, sub_validator in required_keys:
if k not in val:
return (_('%(key_name)s key is missing from %(var_name)s') %
{'key_name': k, 'var_name': var_name})
vname = '%s["%s"]' % (var_name, k)
error = sub_validator(vname, val[k])
if error:
return error
if settings.LOG_API_EVENT_TYPES:
type_structure[k] = sub_validator.type_structure # type: ignore[attr-defined] # monkey-patching
for k, sub_validator in optional_keys:
if k in val:
vname = '%s["%s"]' % (var_name, k)
error = sub_validator(vname, val[k])
if error:
return error
if settings.LOG_API_EVENT_TYPES:
type_structure[k] = sub_validator.type_structure # type: ignore[attr-defined] # monkey-patching
if value_validator:
for key in val:
vname = '%s contains a value that' % (var_name,)
error = value_validator(vname, val[key])
if error:
return error
if settings.LOG_API_EVENT_TYPES:
type_structure['any'] = value_validator.type_structure # type: ignore[attr-defined] # monkey-patching
if _allow_only_listed_keys:
required_keys_set = {x[0] for x in required_keys}
optional_keys_set = {x[0] for x in optional_keys}
delta_keys = set(val.keys()) - required_keys_set - optional_keys_set
if len(delta_keys) != 0:
return _("Unexpected arguments: %s") % (", ".join(list(delta_keys)),)
return None
return f
def check_dict_only(required_keys: Iterable[Tuple[str, Validator]],
optional_keys: Iterable[Tuple[str, Validator]]=[]) -> Validator:
return check_dict(required_keys, optional_keys, _allow_only_listed_keys=True)
def check_variable_type(allowed_type_funcs: Iterable[Validator]) -> Validator:
"""
Use this validator if an argument is of a variable type (e.g. processing
properties that might be strings or booleans).
`allowed_type_funcs`: the check_* validator functions for the possible data
types for this variable.
"""
if settings.LOG_API_EVENT_TYPES:
type_structure = 'any("%s")' % ([x.type_structure for x in allowed_type_funcs],) # type: ignore[attr-defined] # monkey-patching
else:
type_structure = None # type: ignore[assignment] # monkey-patching
@set_type_structure(type_structure)
def enumerated_type_check(var_name: str, val: object) -> Optional[str]:
for func in allowed_type_funcs:
if not func(var_name, val):
return None
return _('%s is not an allowed_type') % (var_name,)
return enumerated_type_check
def equals(expected_val: object) -> Validator:
@set_type_structure('equals("%s")' % (str(expected_val),))
def f(var_name: str, val: object) -> Optional[str]:
if val != expected_val:
return (_('%(variable)s != %(expected_value)s (%(value)s is wrong)') %
{'variable': var_name,
'expected_value': expected_val,
'value': val})
return None
return f
@set_type_structure('str')
def validate_login_email(email: str) -> None:
try:
validate_email(email)
except ValidationError as err:
raise JsonableError(str(err.message))
@set_type_structure('str')
def check_url(var_name: str, val: object) -> Optional[str]:
# First, ensure val is a string
string_msg = check_string(var_name, val)
if string_msg is not None:
return string_msg
# Now, validate as URL
validate = URLValidator()
try:
validate(val)
return None
except ValidationError:
return _('%s is not a URL') % (var_name,)
@set_type_structure('str')
def check_external_account_url_pattern(var_name: str, val: object) -> Optional[str]:
error = check_string(var_name, val)
if error:
return error
val = cast(str, val)
if val.count('%(username)s') != 1:
return _('Malformed URL pattern.')
url_val = val.replace('%(username)s', 'username')
error = check_url(var_name, url_val)
if error:
return error
return None
def validate_choice_field_data(field_data: ProfileFieldData) -> Optional[str]:
"""
This function is used to validate the data sent to the server while
creating/editing choices of the choice field in Organization settings.
"""
validator = check_dict_only([
('text', check_required_string),
('order', check_required_string),
])
for key, value in field_data.items():
if not key.strip():
return _("'{item}' cannot be blank.").format(item='value')
error = validator('field_data', value)
if error:
return error
return None
def validate_choice_field(var_name: str, field_data: str, value: object) -> Optional[str]:
"""
This function is used to validate the value selected by the user against a
choice field. This is not used to validate admin data.
"""
field_data_dict = ujson.loads(field_data)
if value not in field_data_dict:
msg = _("'{value}' is not a valid choice for '{field_name}'.")
return msg.format(value=value, field_name=var_name)
return None
def check_widget_content(widget_content: object) -> Optional[str]:
if not isinstance(widget_content, dict):
return 'widget_content is not a dict'
if 'widget_type' not in widget_content:
return 'widget_type is not in widget_content'
if 'extra_data' not in widget_content:
return 'extra_data is not in widget_content'
widget_type = widget_content['widget_type']
extra_data = widget_content['extra_data']
if not isinstance(extra_data, dict):
return 'extra_data is not a dict'
if widget_type == 'zform':
if 'type' not in extra_data:
return 'zform is missing type field'
if extra_data['type'] == 'choices':
check_choices = check_list(
check_dict([
('short_name', check_string),
('long_name', check_string),
('reply', check_string),
]),
)
checker = check_dict([
('heading', check_string),
('choices', check_choices),
])
msg = checker('extra_data', extra_data)
if msg:
return msg
return None
return 'unknown zform type: ' + extra_data['type']
return 'unknown widget type: ' + widget_type
# Converter functions for use with has_request_variables
@set_type_structure('int')
def to_non_negative_int(s: str, max_int_size: int=2**32-1) -> int:
x = int(s)
if x < 0:
raise ValueError("argument is negative")
if x > max_int_size:
raise ValueError('%s is too large (max %s)' % (x, max_int_size))
return x
@set_type_structure('any(List[int], str)]')
def check_string_or_int_list(var_name: str, val: object) -> Optional[str]:
if isinstance(val, str):
return None
if not isinstance(val, list):
return _('%s is not a string or an integer list') % (var_name,)
return check_list(check_int)(var_name, val)
@set_type_structure('any(int, str)')
def check_string_or_int(var_name: str, val: object) -> Optional[str]:
if isinstance(val, str) or isinstance(val, int):
return None
return _('%s is not a string or integer') % (var_name,)