zulip/tools/generate-activity-metrics.py

167 lines
5.8 KiB
Python
Executable File

#!/usr/bin/env python
#
# Generates % delta activity metrics from graphite/statsd data
#
import os, sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..'))
import optparse
from datetime import timedelta, datetime
from zerver.lib.timestamp import datetime_to_timestamp
from zerver.lib.utils import statsd_key
import requests
# Workaround to support the Python-requests 1.0 transition of .json
# from a property to a function
requests_json_is_function = callable(requests.Response.json)
def extract_json_response(resp):
if requests_json_is_function:
return resp.json()
else:
return resp.json
def get_data_url(buckets, realm):
realm_key = statsd_key(realm, True)
# This is the slightly-cleaned up JSON api version of https://graphiti.zulip.net/graphs/945c7aafc2d
#
# Fetches 1 month worth of data
DATA_URL="https://stats1.zulip.net:444/render/?from=-1000d&format=json"
for bucket in buckets:
if realm != 'all':
statsd_target = "stats.gauges.staging.users.active.%s.%s" % (realm_key, bucket)
DATA_URL += "&target=%s" % (statsd_target,)
else:
# all means adding up all realms, but exclude the .all. metrics since that would double things
DATA_URL += "&target=sum(exclude(stats.gauges.staging.users.active.*.%s, 'all'))" % (bucket,)
return DATA_URL
def get_data(url, username, pw):
from requests.auth import HTTPDigestAuth
res = requests.get(url, auth=HTTPDigestAuth(username, pw), verify=False)
if res.status_code != 200:
print "Failed to fetch data url: %s" % (res.error,)
return []
return extract_json_response(res)
def noon_of(day=datetime.now()):
return datetime(year=day.year, month=day.month, day=day.day, hour=12)
def points_during_day(data, noon):
"""Returns all the points in the dataset that occur in the 12 hours around
the datetime object that is passed in. data must be sorted."""
before =datetime_to_timestamp(noon - timedelta(hours=12))
after = datetime_to_timestamp(noon + timedelta(hours=12))
between = filter(lambda pt: pt[1] > before and pt[1] < after, data)
return between
def best_during_day(data, day):
valid = sorted(points_during_day(data, day), key=lambda pt: pt[0], reverse=True)
if len(valid):
return valid[0][0]
else:
return None
def percent_diff(prev, cur):
if prev is None or cur is None:
return None
if cur == 0 and prev == 0:
return ""
if prev == 0:
return "NaN"
return "%.02f%%" % (((cur - prev) / prev) * 100,)
def parse_data(data, today):
def print_results(all_days, days, compare_with_last=False):
first_data_point = True
best_last_time = 0
for i in all_days:
day = today - timedelta(days=i)
# Ignore weekends
if day.weekday() in days:
best = best_during_day(metric['datapoints'], day)
if best is None:
continue
if not compare_with_last:
percent = percent_diff(best, best_today)
else:
if first_data_point:
percent = ""
first_data_point = False
else:
percent = percent_diff(best_last_time, best)
if best is not None:
print "Last %s, %s %s ago:\t%.01f\t\t%s" \
% (day.strftime("%A"), i, "days", best, percent)
best_last_time = best
for metric in data:
# print "Got %s with data points %s" % (metric['target'], len(metric['datapoints']))
# Calculate % between peak 2hr and 10min across each day and week
metric['datapoints'].sort(key=lambda p: p[1])
best_today = best_during_day(metric['datapoints'], today)
print "Date\t\t\t\tUsers\t\tChange from then to today"
print "Today, 0 days ago:\t\t%.01f" % (best_today,)
print_results(xrange(1, 1000), [0, 1, 2, 3, 4, 7])
print "\n\nWeekly Wednesday results"
print "Date\t\t\t\tUsers\t\tDelta from previous week"
print_results(reversed(xrange(1, 1000)), [2], True)
parser = optparse.OptionParser(r"""
%prog --user username --password pw [--start-from unixtimestamp]
Generates activity statistics with detailed week-over-week percentage change
""")
parser.add_option('--user',
help='Graphite usernarme',
metavar='USER')
parser.add_option('--password',
help='Graphite password',
metavar='PASSWORD')
parser.add_option('--start-from',
help='What day to consider as \'today\' when calculating stats as a Unix timestamp',
metavar='STARTDATE',
default='today')
parser.add_option('--realm',
help='Which realm to query',
default='all')
parser.add_option('--bucket',
help='Which bucket to query',
default='12hr')
if __name__ == '__main__':
(options, args) = parser.parse_args()
if not options.user or not options.password:
parser.error("You must enter a username and password to log into graphite with")
startfrom = noon_of(day=datetime.now())
if options.start_from != 'today':
startfrom = noon_of(day=datetime.fromtimestamp(int(options.start_from)))
print "Using baseline of today as %s" % (startfrom,)
realm_key = statsd_key(options.realm, True)
buckets = [options.bucket]
# This is the slightly-cleaned up JSON api version of https://graphiti.zulip.net/graphs/945c7aafc2d
#
# Fetches 1 month worth of data
DATA_URL = get_data_url(buckets, options.realm)
data = get_data(DATA_URL, options.user, options.password)
parse_data(data, startfrom)