zulip/zerver/lib/cache.py

808 lines
26 KiB
Python

# See https://zulip.readthedocs.io/en/latest/subsystems/caching.html for docs
import hashlib
import logging
import os
import re
import secrets
import sys
import time
import traceback
from functools import _lru_cache_wrapper, lru_cache, wraps
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Generic,
Iterable,
List,
Optional,
Sequence,
Tuple,
TypeVar,
)
from django.conf import settings
from django.core.cache import caches
from django.core.cache.backends.base import BaseCache
from django.db.models import Q
from django.http import HttpRequest
from django_stubs_ext import QuerySetAny
from typing_extensions import ParamSpec
from zerver.lib.utils import make_safe_digest
if TYPE_CHECKING:
# These modules have to be imported for type annotations but
# they cannot be imported at runtime due to cyclic dependency.
from zerver.models import Attachment, Message, MutedUser, Realm, Stream, SubMessage, UserProfile
MEMCACHED_MAX_KEY_LENGTH = 250
ParamT = ParamSpec("ParamT")
ReturnT = TypeVar("ReturnT")
logger = logging.getLogger()
remote_cache_time_start = 0.0
remote_cache_total_time = 0.0
remote_cache_total_requests = 0
def get_remote_cache_time() -> float:
return remote_cache_total_time
def get_remote_cache_requests() -> int:
return remote_cache_total_requests
def remote_cache_stats_start() -> None:
global remote_cache_time_start
remote_cache_time_start = time.time()
def remote_cache_stats_finish() -> None:
global remote_cache_total_time
global remote_cache_total_requests
remote_cache_total_requests += 1
remote_cache_total_time += time.time() - remote_cache_time_start
def get_or_create_key_prefix() -> str:
if settings.PUPPETEER_TESTS:
# This sets the prefix for the benefit of the Puppeteer tests.
#
# Having a fixed key is OK since we don't support running
# multiple copies of the Puppeteer tests at the same time anyway.
return "puppeteer_tests:"
elif settings.TEST_SUITE:
# The Python tests overwrite KEY_PREFIX on each test, but use
# this codepath as well, just to save running the more complex
# code below for reading the normal key prefix.
return "django_tests_unused:"
# directory `var` should exist in production
os.makedirs(os.path.join(settings.DEPLOY_ROOT, "var"), exist_ok=True)
filename = os.path.join(settings.DEPLOY_ROOT, "var", "remote_cache_prefix")
try:
with open(filename, "x") as f:
prefix = secrets.token_hex(16) + ":"
f.write(prefix + "\n")
except FileExistsError:
tries = 1
while tries < 10:
with open(filename) as f:
prefix = f.readline()[:-1]
if len(prefix) == 33:
break
tries += 1
prefix = ""
time.sleep(0.5)
if not prefix:
print("Could not read remote cache key prefix file")
sys.exit(1)
return prefix
KEY_PREFIX: str = get_or_create_key_prefix()
def bounce_key_prefix_for_testing(test_name: str) -> None:
global KEY_PREFIX
KEY_PREFIX = test_name + ":" + str(os.getpid()) + ":"
# We are taking the hash of the KEY_PREFIX to decrease the size of the key.
# Memcached keys should have a length of less than 250.
KEY_PREFIX = hashlib.sha1(KEY_PREFIX.encode()).hexdigest() + ":"
def get_cache_backend(cache_name: Optional[str]) -> BaseCache:
if cache_name is None:
cache_name = "default"
return caches[cache_name]
def cache_with_key(
keyfunc: Callable[ParamT, str],
cache_name: Optional[str] = None,
timeout: Optional[int] = None,
) -> Callable[[Callable[ParamT, ReturnT]], Callable[ParamT, ReturnT]]:
"""Decorator which applies Django caching to a function.
Decorator argument is a function which computes a cache key
from the original function's arguments. You are responsible
for avoiding collisions with other uses of this decorator or
other uses of caching."""
def decorator(func: Callable[ParamT, ReturnT]) -> Callable[ParamT, ReturnT]:
@wraps(func)
def func_with_caching(*args: ParamT.args, **kwargs: ParamT.kwargs) -> ReturnT:
key = keyfunc(*args, **kwargs)
try:
val = cache_get(key, cache_name=cache_name)
except InvalidCacheKeyError:
stack_trace = traceback.format_exc()
log_invalid_cache_keys(stack_trace, [key])
return func(*args, **kwargs)
# Values are singleton tuples so that we can distinguish
# a result of None from a missing key.
if val is not None:
return val[0]
val = func(*args, **kwargs)
if isinstance(val, QuerySetAny):
logging.error(
"cache_with_key attempted to store a full QuerySet object -- declining to cache",
stack_info=True,
)
else:
cache_set(key, val, cache_name=cache_name, timeout=timeout)
return val
return func_with_caching
return decorator
class InvalidCacheKeyError(Exception):
pass
def log_invalid_cache_keys(stack_trace: str, key: List[str]) -> None:
logger.warning(
"Invalid cache key used: %s\nStack trace: %s\n",
key,
stack_trace,
)
def validate_cache_key(key: str) -> None:
if not key.startswith(KEY_PREFIX):
key = KEY_PREFIX + key
# Theoretically memcached can handle non-ascii characters
# and only "control" characters are strictly disallowed, see:
# https://github.com/memcached/memcached/blob/master/doc/protocol.txt
# However, limiting the characters we allow in keys simiplifies things,
# and anyway we use make_safe_digest when forming some keys to ensure
# the resulting keys fit the regex below.
# The regex checks "all characters between ! and ~ in the ascii table",
# which happens to be the set of all "nice" ascii characters.
if not bool(re.fullmatch(r"([!-~])+", key)):
raise InvalidCacheKeyError("Invalid characters in the cache key: " + key)
if len(key) > MEMCACHED_MAX_KEY_LENGTH:
raise InvalidCacheKeyError(f"Cache key too long: {key} Length: {len(key)}")
def cache_set(
key: str, val: Any, cache_name: Optional[str] = None, timeout: Optional[int] = None
) -> None:
final_key = KEY_PREFIX + key
validate_cache_key(final_key)
remote_cache_stats_start()
cache_backend = get_cache_backend(cache_name)
cache_backend.set(final_key, (val,), timeout=timeout)
remote_cache_stats_finish()
def cache_get(key: str, cache_name: Optional[str] = None) -> Any:
final_key = KEY_PREFIX + key
validate_cache_key(final_key)
remote_cache_stats_start()
cache_backend = get_cache_backend(cache_name)
ret = cache_backend.get(final_key)
remote_cache_stats_finish()
return ret
def cache_get_many(keys: List[str], cache_name: Optional[str] = None) -> Dict[str, Any]:
keys = [KEY_PREFIX + key for key in keys]
for key in keys:
validate_cache_key(key)
remote_cache_stats_start()
ret = get_cache_backend(cache_name).get_many(keys)
remote_cache_stats_finish()
return {key[len(KEY_PREFIX) :]: value for key, value in ret.items()}
def safe_cache_get_many(keys: List[str], cache_name: Optional[str] = None) -> Dict[str, Any]:
"""Variant of cache_get_many that drops any keys that fail
validation, rather than throwing an exception visible to the
caller."""
try:
# Almost always the keys will all be correct, so we just try
# to do normal cache_get_many to avoid the overhead of
# validating all the keys here.
return cache_get_many(keys, cache_name)
except InvalidCacheKeyError:
stack_trace = traceback.format_exc()
good_keys, bad_keys = filter_good_and_bad_keys(keys)
log_invalid_cache_keys(stack_trace, bad_keys)
return cache_get_many(good_keys, cache_name)
def cache_set_many(
items: Dict[str, Any], cache_name: Optional[str] = None, timeout: Optional[int] = None
) -> None:
new_items = {}
for key in items:
new_key = KEY_PREFIX + key
validate_cache_key(new_key)
new_items[new_key] = items[key]
items = new_items
remote_cache_stats_start()
get_cache_backend(cache_name).set_many(items, timeout=timeout)
remote_cache_stats_finish()
def safe_cache_set_many(
items: Dict[str, Any], cache_name: Optional[str] = None, timeout: Optional[int] = None
) -> None:
"""Variant of cache_set_many that drops saving any keys that fail
validation, rather than throwing an exception visible to the
caller."""
try:
# Almost always the keys will all be correct, so we just try
# to do normal cache_set_many to avoid the overhead of
# validating all the keys here.
return cache_set_many(items, cache_name, timeout)
except InvalidCacheKeyError:
stack_trace = traceback.format_exc()
good_keys, bad_keys = filter_good_and_bad_keys(list(items.keys()))
log_invalid_cache_keys(stack_trace, bad_keys)
good_items = {key: items[key] for key in good_keys}
return cache_set_many(good_items, cache_name, timeout)
def cache_delete(key: str, cache_name: Optional[str] = None) -> None:
final_key = KEY_PREFIX + key
validate_cache_key(final_key)
remote_cache_stats_start()
get_cache_backend(cache_name).delete(final_key)
remote_cache_stats_finish()
def cache_delete_many(items: Iterable[str], cache_name: Optional[str] = None) -> None:
keys = [KEY_PREFIX + item for item in items]
for key in keys:
validate_cache_key(key)
remote_cache_stats_start()
get_cache_backend(cache_name).delete_many(keys)
remote_cache_stats_finish()
def filter_good_and_bad_keys(keys: List[str]) -> Tuple[List[str], List[str]]:
good_keys = []
bad_keys = []
for key in keys:
try:
validate_cache_key(key)
good_keys.append(key)
except InvalidCacheKeyError:
bad_keys.append(key)
return good_keys, bad_keys
# Generic_bulk_cached fetch and its helpers. We start with declaring
# a few type variables that help define its interface.
# Type for the cache's keys; will typically be int or str.
ObjKT = TypeVar("ObjKT")
# Type for items to be fetched from the database (e.g. a Django model object)
ItemT = TypeVar("ItemT")
# Type for items to be stored in the cache (e.g. a dictionary serialization).
# Will equal ItemT unless a cache_transformer is specified.
CacheItemT = TypeVar("CacheItemT")
# Type for compressed items for storage in the cache. For
# serializable objects, will be the object; if encoded, bytes.
CompressedItemT = TypeVar("CompressedItemT")
# Required arguments are as follows:
# * object_ids: The list of object ids to look up
# * cache_key_function: object_id => cache key
# * query_function: [object_ids] => [objects from database]
# * setter: Function to call before storing items to cache (e.g. compression)
# * extractor: Function to call on items returned from cache
# (e.g. decompression). Should be the inverse of the setter
# function.
# * id_fetcher: Function mapping an object from database => object_id
# (in case we're using a key more complex than obj.id)
# * cache_transformer: Function mapping an object from database =>
# value for cache (in case the values that we're caching are some
# function of the objects, not the objects themselves)
def generic_bulk_cached_fetch(
cache_key_function: Callable[[ObjKT], str],
query_function: Callable[[List[ObjKT]], Iterable[ItemT]],
object_ids: Sequence[ObjKT],
*,
extractor: Callable[[CompressedItemT], CacheItemT],
setter: Callable[[CacheItemT], CompressedItemT],
id_fetcher: Callable[[ItemT], ObjKT],
cache_transformer: Callable[[ItemT], CacheItemT],
) -> Dict[ObjKT, CacheItemT]:
if len(object_ids) == 0:
# Nothing to fetch.
return {}
cache_keys: Dict[ObjKT, str] = {}
for object_id in object_ids:
cache_keys[object_id] = cache_key_function(object_id)
cached_objects_compressed: Dict[str, Tuple[CompressedItemT]] = safe_cache_get_many(
[cache_keys[object_id] for object_id in object_ids],
)
cached_objects: Dict[str, CacheItemT] = {}
for key, val in cached_objects_compressed.items():
cached_objects[key] = extractor(cached_objects_compressed[key][0])
needed_ids = [
object_id for object_id in object_ids if cache_keys[object_id] not in cached_objects
]
# Only call query_function if there are some ids to fetch from the database:
if len(needed_ids) > 0:
db_objects = query_function(needed_ids)
else:
db_objects = []
items_for_remote_cache: Dict[str, Tuple[CompressedItemT]] = {}
for obj in db_objects:
key = cache_keys[id_fetcher(obj)]
item = cache_transformer(obj)
items_for_remote_cache[key] = (setter(item),)
cached_objects[key] = item
if len(items_for_remote_cache) > 0:
safe_cache_set_many(items_for_remote_cache)
return {
object_id: cached_objects[cache_keys[object_id]]
for object_id in object_ids
if cache_keys[object_id] in cached_objects
}
def transformed_bulk_cached_fetch(
cache_key_function: Callable[[ObjKT], str],
query_function: Callable[[List[ObjKT]], Iterable[ItemT]],
object_ids: Sequence[ObjKT],
*,
id_fetcher: Callable[[ItemT], ObjKT],
cache_transformer: Callable[[ItemT], CacheItemT],
) -> Dict[ObjKT, CacheItemT]:
return generic_bulk_cached_fetch(
cache_key_function,
query_function,
object_ids,
extractor=lambda obj: obj,
setter=lambda obj: obj,
id_fetcher=id_fetcher,
cache_transformer=cache_transformer,
)
def bulk_cached_fetch(
cache_key_function: Callable[[ObjKT], str],
query_function: Callable[[List[ObjKT]], Iterable[ItemT]],
object_ids: Sequence[ObjKT],
*,
id_fetcher: Callable[[ItemT], ObjKT],
) -> Dict[ObjKT, ItemT]:
return transformed_bulk_cached_fetch(
cache_key_function,
query_function,
object_ids,
id_fetcher=id_fetcher,
cache_transformer=lambda obj: obj,
)
def preview_url_cache_key(url: str) -> str:
return f"preview_url:{make_safe_digest(url)}"
def display_recipient_cache_key(recipient_id: int) -> str:
return f"display_recipient_dict:{recipient_id}"
def display_recipient_bulk_get_users_by_id_cache_key(user_id: int) -> str:
# Cache key function for a function for bulk fetching users, used internally
# by display_recipient code.
return "bulk_fetch_display_recipients:" + user_profile_by_id_cache_key(user_id)
def user_profile_cache_key_id(email: str, realm_id: int) -> str:
return f"user_profile:{make_safe_digest(email.strip())}:{realm_id}"
def user_profile_cache_key(email: str, realm: "Realm") -> str:
return user_profile_cache_key_id(email, realm.id)
def user_profile_delivery_email_cache_key(delivery_email: str, realm: "Realm") -> str:
return f"user_profile_by_delivery_email:{make_safe_digest(delivery_email.strip())}:{realm.id}"
def bot_profile_cache_key(email: str, realm_id: int) -> str:
return f"bot_profile:{make_safe_digest(email.strip())}"
def user_profile_by_id_cache_key(user_profile_id: int) -> str:
return f"user_profile_by_id:{user_profile_id}"
def user_profile_by_api_key_cache_key(api_key: str) -> str:
return f"user_profile_by_api_key:{api_key}"
realm_user_dict_fields: List[str] = [
"id",
"full_name",
"email",
"avatar_source",
"avatar_version",
"is_active",
"role",
"is_billing_admin",
"is_bot",
"timezone",
"date_joined",
"bot_owner_id",
"delivery_email",
"bot_type",
"long_term_idle",
"email_address_visibility",
]
def realm_user_dicts_cache_key(realm_id: int) -> str:
return f"realm_user_dicts:{realm_id}"
def get_muting_users_cache_key(muted_user_id: int) -> str:
return f"muting_users_list:{muted_user_id}"
def get_realm_used_upload_space_cache_key(realm_id: int) -> str:
return f"realm_used_upload_space:{realm_id}"
def active_user_ids_cache_key(realm_id: int) -> str:
return f"active_user_ids:{realm_id}"
def active_non_guest_user_ids_cache_key(realm_id: int) -> str:
return f"active_non_guest_user_ids:{realm_id}"
bot_dict_fields: List[str] = [
"api_key",
"avatar_source",
"avatar_version",
"bot_owner_id",
"bot_type",
"default_all_public_streams",
"default_events_register_stream__name",
"default_sending_stream__name",
"email",
"full_name",
"id",
"is_active",
"realm_id",
]
def bot_dicts_in_realm_cache_key(realm_id: int) -> str:
return f"bot_dicts_in_realm:{realm_id}"
def delete_user_profile_caches(user_profiles: Iterable["UserProfile"]) -> None:
# Imported here to avoid cyclic dependency.
from zerver.lib.users import get_all_api_keys
from zerver.models import is_cross_realm_bot_email
keys = []
for user_profile in user_profiles:
keys.append(user_profile_by_id_cache_key(user_profile.id))
for api_key in get_all_api_keys(user_profile):
keys.append(user_profile_by_api_key_cache_key(api_key))
keys.append(user_profile_cache_key(user_profile.email, user_profile.realm))
keys.append(
user_profile_delivery_email_cache_key(user_profile.delivery_email, user_profile.realm)
)
if user_profile.is_bot and is_cross_realm_bot_email(user_profile.email):
# Handle clearing system bots from their special cache.
keys.append(bot_profile_cache_key(user_profile.email, user_profile.realm_id))
cache_delete_many(keys)
def delete_display_recipient_cache(user_profile: "UserProfile") -> None:
from zerver.models import Subscription # We need to import here to avoid cyclic dependency.
recipient_ids = Subscription.objects.filter(user_profile=user_profile).values_list(
"recipient_id", flat=True
)
keys = [display_recipient_cache_key(rid) for rid in recipient_ids]
keys.append(display_recipient_bulk_get_users_by_id_cache_key(user_profile.id))
cache_delete_many(keys)
def changed(update_fields: Optional[Sequence[str]], fields: List[str]) -> bool:
if update_fields is None:
# adds/deletes should invalidate the cache
return True
update_fields_set = set(update_fields)
return any(f in update_fields_set for f in fields)
# Called by models.py to flush the user_profile cache whenever we save
# a user_profile object
def flush_user_profile(
*,
instance: "UserProfile",
update_fields: Optional[Sequence[str]] = None,
**kwargs: object,
) -> None:
user_profile = instance
delete_user_profile_caches([user_profile])
# Invalidate our active_users_in_realm info dict if any user has changed
# the fields in the dict or become (in)active
if changed(update_fields, realm_user_dict_fields):
cache_delete(realm_user_dicts_cache_key(user_profile.realm_id))
if changed(update_fields, ["is_active"]):
cache_delete(active_user_ids_cache_key(user_profile.realm_id))
cache_delete(active_non_guest_user_ids_cache_key(user_profile.realm_id))
if changed(update_fields, ["role"]):
cache_delete(active_non_guest_user_ids_cache_key(user_profile.realm_id))
if changed(update_fields, ["email", "full_name", "id", "is_mirror_dummy"]):
delete_display_recipient_cache(user_profile)
# Invalidate our bots_in_realm info dict if any bot has
# changed the fields in the dict or become (in)active
if user_profile.is_bot and changed(update_fields, bot_dict_fields):
cache_delete(bot_dicts_in_realm_cache_key(user_profile.realm_id))
def flush_muting_users_cache(*, instance: "MutedUser", **kwargs: object) -> None:
mute_object = instance
cache_delete(get_muting_users_cache_key(mute_object.muted_user_id))
# Called by models.py to flush various caches whenever we save
# a Realm object. The main tricky thing here is that Realm info is
# generally cached indirectly through user_profile objects.
def flush_realm(
*,
instance: "Realm",
update_fields: Optional[Sequence[str]] = None,
from_deletion: bool = False,
**kwargs: object,
) -> None:
realm = instance
users = realm.get_active_users()
delete_user_profile_caches(users)
if (
from_deletion
or realm.deactivated
or (update_fields is not None and "string_id" in update_fields)
):
cache_delete(realm_user_dicts_cache_key(realm.id))
cache_delete(active_user_ids_cache_key(realm.id))
cache_delete(bot_dicts_in_realm_cache_key(realm.id))
cache_delete(realm_alert_words_cache_key(realm.id))
cache_delete(realm_alert_words_automaton_cache_key(realm.id))
cache_delete(active_non_guest_user_ids_cache_key(realm.id))
cache_delete(realm_rendered_description_cache_key(realm))
cache_delete(realm_text_description_cache_key(realm))
elif changed(update_fields, ["description"]):
cache_delete(realm_rendered_description_cache_key(realm))
cache_delete(realm_text_description_cache_key(realm))
def realm_alert_words_cache_key(realm_id: int) -> str:
return f"realm_alert_words:{realm_id}"
def realm_alert_words_automaton_cache_key(realm_id: int) -> str:
return f"realm_alert_words_automaton:{realm_id}"
def realm_rendered_description_cache_key(realm: "Realm") -> str:
return f"realm_rendered_description:{realm.string_id}"
def realm_text_description_cache_key(realm: "Realm") -> str:
return f"realm_text_description:{realm.string_id}"
# Called by models.py to flush the stream cache whenever we save a stream
# object.
def flush_stream(
*,
instance: "Stream",
update_fields: Optional[Sequence[str]] = None,
**kwargs: object,
) -> None:
from zerver.models import UserProfile
stream = instance
if (
update_fields is None
or "name" in update_fields
and UserProfile.objects.filter(
Q(default_sending_stream=stream) | Q(default_events_register_stream=stream)
).exists()
):
cache_delete(bot_dicts_in_realm_cache_key(stream.realm_id))
def flush_used_upload_space_cache(
*,
instance: "Attachment",
created: bool = True,
**kwargs: object,
) -> None:
attachment = instance
if created:
cache_delete(get_realm_used_upload_space_cache_key(attachment.owner.realm_id))
def to_dict_cache_key_id(message_id: int) -> str:
return f"message_dict:{message_id}"
def to_dict_cache_key(message: "Message", realm_id: Optional[int] = None) -> str:
return to_dict_cache_key_id(message.id)
def open_graph_description_cache_key(content: bytes, request: HttpRequest) -> str:
return "open_graph_description_path:{}".format(make_safe_digest(request.META["PATH_INFO"]))
def flush_message(*, instance: "Message", **kwargs: object) -> None:
message = instance
cache_delete(to_dict_cache_key_id(message.id))
def flush_submessage(*, instance: "SubMessage", **kwargs: object) -> None:
submessage = instance
# submessages are not cached directly, they are part of their
# parent messages
message_id = submessage.message_id
cache_delete(to_dict_cache_key_id(message_id))
class IgnoreUnhashableLruCacheWrapper(Generic[ParamT, ReturnT]):
def __init__(
self, function: Callable[ParamT, ReturnT], cached_function: "_lru_cache_wrapper[ReturnT]"
) -> None:
self.key_prefix = KEY_PREFIX
self.function = function
self.cached_function = cached_function
self.cache_info = cached_function.cache_info
self.cache_clear = cached_function.cache_clear
def __call__(self, *args: ParamT.args, **kwargs: ParamT.kwargs) -> ReturnT:
if settings.DEVELOPMENT and not settings.TEST_SUITE: # nocoverage
# In the development environment, we want every file
# change to refresh the source files from disk.
return self.function(*args, **kwargs)
if self.key_prefix != KEY_PREFIX:
# Clear cache when cache.KEY_PREFIX changes. This is used in
# tests.
self.cache_clear()
self.key_prefix = KEY_PREFIX
try:
return self.cached_function(
*args, **kwargs # type: ignore[arg-type] # might be unhashable
)
except TypeError:
# args or kwargs contains an element which is unhashable. In
# this case we don't cache the result.
pass
# Deliberately calling this function from outside of exception
# handler to get a more descriptive traceback. Otherwise traceback
# can include the exception from cached_function as well.
return self.function(*args, **kwargs)
def ignore_unhashable_lru_cache(
maxsize: int = 128, typed: bool = False
) -> Callable[[Callable[ParamT, ReturnT]], IgnoreUnhashableLruCacheWrapper[ParamT, ReturnT]]:
"""
This is a wrapper over lru_cache function. It adds following features on
top of lru_cache:
* It will not cache result of functions with unhashable arguments.
* It will clear cache whenever zerver.lib.cache.KEY_PREFIX changes.
"""
internal_decorator = lru_cache(maxsize=maxsize, typed=typed)
def decorator(
user_function: Callable[ParamT, ReturnT]
) -> IgnoreUnhashableLruCacheWrapper[ParamT, ReturnT]:
return IgnoreUnhashableLruCacheWrapper(user_function, internal_decorator(user_function))
return decorator
def dict_to_items_tuple(user_function: Callable[..., Any]) -> Callable[..., Any]:
"""Wrapper that converts any dict args to dict item tuples."""
def dict_to_tuple(arg: Any) -> Any:
if isinstance(arg, dict):
return tuple(sorted(arg.items()))
return arg
def wrapper(*args: Any, **kwargs: Any) -> Any:
new_args = (dict_to_tuple(arg) for arg in args)
return user_function(*new_args, **kwargs)
return wrapper
def items_tuple_to_dict(user_function: Callable[..., Any]) -> Callable[..., Any]:
"""Wrapper that converts any dict items tuple args to dicts."""
def dict_items_to_dict(arg: Any) -> Any:
if isinstance(arg, tuple):
try:
return dict(arg)
except TypeError:
pass
return arg
def wrapper(*args: Any, **kwargs: Any) -> Any:
new_args = (dict_items_to_dict(arg) for arg in args)
new_kwargs = {key: dict_items_to_dict(val) for key, val in kwargs.items()}
return user_function(*new_args, **new_kwargs)
return wrapper