zulip/tools/lib/graph.py

142 lines
4.0 KiB
Python

from __future__ import absolute_import
from __future__ import print_function
from collections import defaultdict
from typing import Callable, DefaultDict, Iterator, List, Optional, Set, Tuple
Edge = Tuple[str, str]
EdgeSet = Set[Edge]
class Graph(object):
def __init__(self, tuples):
# type: (EdgeSet) -> None
self.children = defaultdict(list) # type: DefaultDict[str, List[str]]
self.parents = defaultdict(list) # type: DefaultDict[str, List[str]]
self.nodes = set() # type: Set[str]
for parent, child in tuples:
self.parents[child].append(parent)
self.children[parent].append(child)
self.nodes.add(parent)
self.nodes.add(child)
def copy(self):
# type: () -> Graph
return Graph(self.edges())
def num_edges(self):
# type: () -> int
return len(self.edges())
def minus_edge(self, edge):
# type: (Edge) -> Graph
edges = self.edges().copy()
edges.remove(edge)
return Graph(edges)
def edges(self):
# type: () -> EdgeSet
s = set()
for parent in self.nodes:
for child in self.children[parent]:
s.add((parent, child))
return s
def remove_exterior_nodes(self):
# type: () -> None
still_work_to_do = True
while still_work_to_do:
still_work_to_do = False # for now
for node in self.nodes:
if self.is_exterior_node(node):
self.remove(node)
still_work_to_do = True
break
def is_exterior_node(self, node):
# type: (str) -> bool
parents = self.parents[node]
children = self.children[node]
if not parents:
return True
if not children:
return True
if len(parents) > 1 or len(children) > 1:
return False
# If our only parent and child are the same node, then we could
# effectively be collapsed into the parent, so don't add clutter.
return parents[0] == children[0]
def remove(self, node):
# type: (str) -> None
for parent in self.parents[node]:
self.children[parent].remove(node)
for child in self.children[node]:
self.parents[child].remove(node)
self.nodes.remove(node)
def report(self):
# type: () -> None
print('parents/children/module')
tups = sorted([
(len(self.parents[node]), len(self.children[node]), node)
for node in self.nodes])
for tup in tups:
print(tup)
def best_edge_to_remove(orig_graph, is_exempt):
# type: (Graph, Callable[[Edge], bool]) -> Optional[Edge]
# expects an already reduced graph as input
orig_edges = orig_graph.edges()
def get_choices():
# type: () -> Iterator[Tuple[int, Edge]]
for edge in orig_edges:
if is_exempt(edge):
continue
graph = orig_graph.minus_edge(edge)
graph.remove_exterior_nodes()
size = graph.num_edges()
yield (size, edge)
choices = list(get_choices())
if not choices:
return None
min_size, best_edge = min(choices)
if min_size >= orig_graph.num_edges():
raise Exception('no edges work here')
return best_edge
def make_dot_file(graph):
# type: (Graph) -> str
buffer = 'digraph G {\n'
for node in graph.nodes:
buffer += node + ';\n'
for child in graph.children[node]:
buffer += '{} -> {};\n'.format(node, child)
buffer += '}'
return buffer
def test():
# type: () -> None
graph = Graph(set([
('x', 'a'),
('a', 'b'),
('b', 'c'),
('c', 'a'),
('c', 'd'),
('d', 'e'),
('e', 'f'),
('e', 'g'),
]))
graph.remove_exterior_nodes()
s = make_dot_file(graph)
open('zulip-deps.dot', 'w').write(s)
if __name__ == '__main__':
test()