mirror of https://github.com/zulip/zulip.git
621 lines
23 KiB
Python
621 lines
23 KiB
Python
import logging
|
||
import os
|
||
import time
|
||
from abc import ABC, abstractmethod
|
||
from typing import Dict, List, Optional, Set, Tuple, Type, cast
|
||
|
||
import orjson
|
||
import redis
|
||
from circuitbreaker import CircuitBreakerError, circuit
|
||
from django.conf import settings
|
||
from django.http import HttpRequest
|
||
|
||
from zerver.lib.cache import cache_with_key
|
||
from zerver.lib.exceptions import RateLimitedError
|
||
from zerver.lib.redis_utils import get_redis_client
|
||
from zerver.models import UserProfile
|
||
|
||
# Implement a rate-limiting scheme inspired by the one described here, but heavily modified
|
||
# https://www.domaintools.com/resources/blog/rate-limiting-with-redis
|
||
|
||
client = get_redis_client()
|
||
rules: Dict[str, List[Tuple[int, int]]] = settings.RATE_LIMITING_RULES
|
||
|
||
KEY_PREFIX = ""
|
||
|
||
logger = logging.getLogger(__name__)
|
||
|
||
|
||
class RateLimiterLockingError(Exception):
|
||
pass
|
||
|
||
|
||
class RateLimitedObject(ABC):
|
||
def __init__(self, backend: Optional["Type[RateLimiterBackend]"] = None) -> None:
|
||
if backend is not None:
|
||
self.backend: Type[RateLimiterBackend] = backend
|
||
else:
|
||
self.backend = RedisRateLimiterBackend
|
||
|
||
def rate_limit(self) -> Tuple[bool, float]:
|
||
# Returns (ratelimited, secs_to_freedom)
|
||
return self.backend.rate_limit_entity(
|
||
self.key(), self.get_rules(), self.max_api_calls(), self.max_api_window()
|
||
)
|
||
|
||
def rate_limit_request(self, request: HttpRequest) -> None:
|
||
from zerver.lib.request import RequestNotes
|
||
|
||
ratelimited, time = self.rate_limit()
|
||
request_notes = RequestNotes.get_notes(request)
|
||
|
||
request_notes.ratelimits_applied.append(
|
||
RateLimitResult(
|
||
entity=self,
|
||
secs_to_freedom=time,
|
||
remaining=0,
|
||
over_limit=ratelimited,
|
||
)
|
||
)
|
||
# Abort this request if the user is over their rate limits
|
||
if ratelimited:
|
||
# Pass information about what kind of entity got limited in the exception:
|
||
raise RateLimitedError(time)
|
||
|
||
calls_remaining, seconds_until_reset = self.api_calls_left()
|
||
|
||
request_notes.ratelimits_applied[-1].remaining = calls_remaining
|
||
request_notes.ratelimits_applied[-1].secs_to_freedom = seconds_until_reset
|
||
|
||
def block_access(self, seconds: int) -> None:
|
||
"""Manually blocks an entity for the desired number of seconds"""
|
||
self.backend.block_access(self.key(), seconds)
|
||
|
||
def unblock_access(self) -> None:
|
||
self.backend.unblock_access(self.key())
|
||
|
||
def clear_history(self) -> None:
|
||
self.backend.clear_history(self.key())
|
||
|
||
def max_api_calls(self) -> int:
|
||
"""Returns the API rate limit for the highest limit"""
|
||
return self.get_rules()[-1][1]
|
||
|
||
def max_api_window(self) -> int:
|
||
"""Returns the API time window for the highest limit"""
|
||
return self.get_rules()[-1][0]
|
||
|
||
def api_calls_left(self) -> Tuple[int, float]:
|
||
"""Returns how many API calls in this range this client has, as well as when
|
||
the rate-limit will be reset to 0"""
|
||
max_window = self.max_api_window()
|
||
max_calls = self.max_api_calls()
|
||
return self.backend.get_api_calls_left(self.key(), max_window, max_calls)
|
||
|
||
def get_rules(self) -> List[Tuple[int, int]]:
|
||
"""
|
||
This is a simple wrapper meant to protect against having to deal with
|
||
an empty list of rules, as it would require fiddling with that special case
|
||
all around this system. "9999 max request per seconds" should be a good proxy
|
||
for "no rules".
|
||
"""
|
||
rules_list = self.rules()
|
||
return rules_list or [(1, 9999)]
|
||
|
||
@abstractmethod
|
||
def key(self) -> str:
|
||
pass
|
||
|
||
@abstractmethod
|
||
def rules(self) -> List[Tuple[int, int]]:
|
||
pass
|
||
|
||
|
||
class RateLimitedUser(RateLimitedObject):
|
||
def __init__(self, user: UserProfile, domain: str = "api_by_user") -> None:
|
||
self.user_id = user.id
|
||
self.rate_limits = user.rate_limits
|
||
self.domain = domain
|
||
if settings.RUNNING_INSIDE_TORNADO and domain in settings.RATE_LIMITING_DOMAINS_FOR_TORNADO:
|
||
backend: Optional[Type[RateLimiterBackend]] = TornadoInMemoryRateLimiterBackend
|
||
else:
|
||
backend = None
|
||
super().__init__(backend=backend)
|
||
|
||
def key(self) -> str:
|
||
return f"{type(self).__name__}:{self.user_id}:{self.domain}"
|
||
|
||
def rules(self) -> List[Tuple[int, int]]:
|
||
# user.rate_limits are general limits, applicable to the domain 'api_by_user'
|
||
if self.rate_limits != "" and self.domain == "api_by_user":
|
||
result: List[Tuple[int, int]] = []
|
||
for limit in self.rate_limits.split(","):
|
||
(seconds, requests) = limit.split(":", 2)
|
||
result.append((int(seconds), int(requests)))
|
||
return result
|
||
return rules[self.domain]
|
||
|
||
|
||
class RateLimitedIPAddr(RateLimitedObject):
|
||
def __init__(self, ip_addr: str, domain: str = "api_by_ip") -> None:
|
||
self.ip_addr = ip_addr
|
||
self.domain = domain
|
||
if settings.RUNNING_INSIDE_TORNADO and domain in settings.RATE_LIMITING_DOMAINS_FOR_TORNADO:
|
||
backend: Optional[Type[RateLimiterBackend]] = TornadoInMemoryRateLimiterBackend
|
||
else:
|
||
backend = None
|
||
super().__init__(backend=backend)
|
||
|
||
def key(self) -> str:
|
||
# The angle brackets are important since IPv6 addresses contain :.
|
||
return f"{type(self).__name__}:<{self.ip_addr}>:{self.domain}"
|
||
|
||
def rules(self) -> List[Tuple[int, int]]:
|
||
return rules[self.domain]
|
||
|
||
|
||
def bounce_redis_key_prefix_for_testing(test_name: str) -> None:
|
||
global KEY_PREFIX
|
||
KEY_PREFIX = test_name + ":" + str(os.getpid()) + ":"
|
||
|
||
|
||
def add_ratelimit_rule(range_seconds: int, num_requests: int, domain: str = "api_by_user") -> None:
|
||
"""Add a rate-limiting rule to the ratelimiter"""
|
||
if domain not in rules:
|
||
# If we don't have any rules for domain yet, the domain key needs to be
|
||
# added to the rules dictionary.
|
||
rules[domain] = []
|
||
|
||
rules[domain].append((range_seconds, num_requests))
|
||
rules[domain].sort(key=lambda x: x[0])
|
||
|
||
|
||
def remove_ratelimit_rule(
|
||
range_seconds: int, num_requests: int, domain: str = "api_by_user"
|
||
) -> None:
|
||
rules[domain] = [x for x in rules[domain] if x[0] != range_seconds and x[1] != num_requests]
|
||
|
||
|
||
class RateLimiterBackend(ABC):
|
||
@classmethod
|
||
@abstractmethod
|
||
def block_access(cls, entity_key: str, seconds: int) -> None:
|
||
"""Manually blocks an entity for the desired number of seconds"""
|
||
|
||
@classmethod
|
||
@abstractmethod
|
||
def unblock_access(cls, entity_key: str) -> None:
|
||
pass
|
||
|
||
@classmethod
|
||
@abstractmethod
|
||
def clear_history(cls, entity_key: str) -> None:
|
||
pass
|
||
|
||
@classmethod
|
||
@abstractmethod
|
||
def get_api_calls_left(
|
||
cls, entity_key: str, range_seconds: int, max_calls: int
|
||
) -> Tuple[int, float]:
|
||
pass
|
||
|
||
@classmethod
|
||
@abstractmethod
|
||
def rate_limit_entity(
|
||
cls, entity_key: str, rules: List[Tuple[int, int]], max_api_calls: int, max_api_window: int
|
||
) -> Tuple[bool, float]:
|
||
# Returns (ratelimited, secs_to_freedom)
|
||
pass
|
||
|
||
|
||
class TornadoInMemoryRateLimiterBackend(RateLimiterBackend):
|
||
# reset_times[rule][key] is the time at which the event
|
||
# request from the rate-limited key will be accepted.
|
||
reset_times: Dict[Tuple[int, int], Dict[str, float]] = {}
|
||
|
||
# last_gc_time is the last time when the garbage was
|
||
# collected from reset_times for rule (time_window, max_count).
|
||
last_gc_time: Dict[Tuple[int, int], float] = {}
|
||
|
||
# timestamps_blocked_until[key] contains the timestamp
|
||
# up to which the key has been blocked manually.
|
||
timestamps_blocked_until: Dict[str, float] = {}
|
||
|
||
@classmethod
|
||
def _garbage_collect_for_rule(cls, now: float, time_window: int, max_count: int) -> None:
|
||
keys_to_delete = []
|
||
reset_times_for_rule = cls.reset_times.get((time_window, max_count), None)
|
||
if reset_times_for_rule is None:
|
||
return
|
||
|
||
keys_to_delete = [
|
||
entity_key
|
||
for entity_key in reset_times_for_rule
|
||
if reset_times_for_rule[entity_key] < now
|
||
]
|
||
|
||
for entity_key in keys_to_delete:
|
||
del reset_times_for_rule[entity_key]
|
||
|
||
if not reset_times_for_rule:
|
||
del cls.reset_times[(time_window, max_count)]
|
||
|
||
@classmethod
|
||
def need_to_limit(cls, entity_key: str, time_window: int, max_count: int) -> Tuple[bool, float]:
|
||
"""
|
||
Returns a tuple of `(rate_limited, time_till_free)`.
|
||
For simplicity, we have loosened the semantics here from
|
||
- each key may make atmost `count * (t / window)` request within any t
|
||
time interval.
|
||
to
|
||
- each key may make atmost `count * [(t / window) + 1]` request within
|
||
any t time interval.
|
||
Thus, we only need to store reset_times for each key which will be less
|
||
memory-intensive. This also has the advantage that you can only ever
|
||
lock yourself out completely for `window / count` seconds instead of
|
||
`window` seconds.
|
||
"""
|
||
now = time.time()
|
||
|
||
# Remove all timestamps from `reset_times` that are too old.
|
||
if cls.last_gc_time.get((time_window, max_count), 0) <= now - time_window / max_count:
|
||
cls.last_gc_time[(time_window, max_count)] = now
|
||
cls._garbage_collect_for_rule(now, time_window, max_count)
|
||
|
||
reset_times_for_rule = cls.reset_times.setdefault((time_window, max_count), {})
|
||
new_reset = max(reset_times_for_rule.get(entity_key, now), now) + time_window / max_count
|
||
|
||
if new_reset > now + time_window:
|
||
# Compute for how long the bucket will remain filled.
|
||
time_till_free = new_reset - time_window - now
|
||
return True, time_till_free
|
||
|
||
reset_times_for_rule[entity_key] = new_reset
|
||
return False, 0.0
|
||
|
||
@classmethod
|
||
def get_api_calls_left(
|
||
cls, entity_key: str, range_seconds: int, max_calls: int
|
||
) -> Tuple[int, float]:
|
||
now = time.time()
|
||
if (range_seconds, max_calls) in cls.reset_times and entity_key in cls.reset_times[
|
||
(range_seconds, max_calls)
|
||
]:
|
||
reset_time = cls.reset_times[(range_seconds, max_calls)][entity_key]
|
||
else:
|
||
return max_calls, 0
|
||
|
||
calls_remaining = (now + range_seconds - reset_time) * max_calls // range_seconds
|
||
return int(calls_remaining), reset_time - now
|
||
|
||
@classmethod
|
||
def block_access(cls, entity_key: str, seconds: int) -> None:
|
||
now = time.time()
|
||
cls.timestamps_blocked_until[entity_key] = now + seconds
|
||
|
||
@classmethod
|
||
def unblock_access(cls, entity_key: str) -> None:
|
||
del cls.timestamps_blocked_until[entity_key]
|
||
|
||
@classmethod
|
||
def clear_history(cls, entity_key: str) -> None:
|
||
for rule, reset_times_for_rule in cls.reset_times.items():
|
||
reset_times_for_rule.pop(entity_key, None)
|
||
cls.timestamps_blocked_until.pop(entity_key, None)
|
||
|
||
@classmethod
|
||
def rate_limit_entity(
|
||
cls, entity_key: str, rules: List[Tuple[int, int]], max_api_calls: int, max_api_window: int
|
||
) -> Tuple[bool, float]:
|
||
now = time.time()
|
||
if entity_key in cls.timestamps_blocked_until:
|
||
# Check whether the key is manually blocked.
|
||
if now < cls.timestamps_blocked_until[entity_key]:
|
||
blocking_ttl = cls.timestamps_blocked_until[entity_key] - now
|
||
return True, blocking_ttl
|
||
else:
|
||
del cls.timestamps_blocked_until[entity_key]
|
||
|
||
assert rules
|
||
for time_window, max_count in rules:
|
||
ratelimited, time_till_free = cls.need_to_limit(entity_key, time_window, max_count)
|
||
|
||
if ratelimited:
|
||
break
|
||
|
||
return ratelimited, time_till_free
|
||
|
||
|
||
class RedisRateLimiterBackend(RateLimiterBackend):
|
||
@classmethod
|
||
def get_keys(cls, entity_key: str) -> List[str]:
|
||
return [
|
||
f"{KEY_PREFIX}ratelimit:{entity_key}:{keytype}" for keytype in ["list", "zset", "block"]
|
||
]
|
||
|
||
@classmethod
|
||
def block_access(cls, entity_key: str, seconds: int) -> None:
|
||
"""Manually blocks an entity for the desired number of seconds"""
|
||
_, _, blocking_key = cls.get_keys(entity_key)
|
||
with client.pipeline() as pipe:
|
||
pipe.set(blocking_key, 1)
|
||
pipe.expire(blocking_key, seconds)
|
||
pipe.execute()
|
||
|
||
@classmethod
|
||
def unblock_access(cls, entity_key: str) -> None:
|
||
_, _, blocking_key = cls.get_keys(entity_key)
|
||
client.delete(blocking_key)
|
||
|
||
@classmethod
|
||
def clear_history(cls, entity_key: str) -> None:
|
||
for key in cls.get_keys(entity_key):
|
||
client.delete(key)
|
||
|
||
@classmethod
|
||
def get_api_calls_left(
|
||
cls, entity_key: str, range_seconds: int, max_calls: int
|
||
) -> Tuple[int, float]:
|
||
list_key, set_key, _ = cls.get_keys(entity_key)
|
||
# Count the number of values in our sorted set
|
||
# that are between now and the cutoff
|
||
now = time.time()
|
||
boundary = now - range_seconds
|
||
|
||
with client.pipeline() as pipe:
|
||
# Count how many API calls in our range have already been made
|
||
pipe.zcount(set_key, boundary, now)
|
||
# Get the newest call so we can calculate when the ratelimit
|
||
# will reset to 0
|
||
pipe.lindex(list_key, 0)
|
||
|
||
results = pipe.execute()
|
||
|
||
count: int = results[0]
|
||
newest_call: Optional[bytes] = results[1]
|
||
|
||
calls_left = max_calls - count
|
||
if newest_call is not None:
|
||
time_reset = now + (range_seconds - (now - float(newest_call)))
|
||
else:
|
||
time_reset = now
|
||
|
||
return calls_left, time_reset - now
|
||
|
||
@classmethod
|
||
def is_ratelimited(cls, entity_key: str, rules: List[Tuple[int, int]]) -> Tuple[bool, float]:
|
||
"""Returns a tuple of (rate_limited, time_till_free)"""
|
||
assert rules
|
||
list_key, set_key, blocking_key = cls.get_keys(entity_key)
|
||
|
||
# Go through the rules from shortest to longest,
|
||
# seeing if this user has violated any of them. First
|
||
# get the timestamps for each nth items
|
||
with client.pipeline() as pipe:
|
||
for _, request_count in rules:
|
||
pipe.lindex(list_key, request_count - 1) # 0-indexed list
|
||
|
||
# Get blocking info
|
||
pipe.get(blocking_key)
|
||
pipe.ttl(blocking_key)
|
||
|
||
rule_timestamps: List[Optional[bytes]] = pipe.execute()
|
||
|
||
# Check if there is a manual block on this API key
|
||
blocking_ttl_b = rule_timestamps.pop()
|
||
key_blocked = rule_timestamps.pop()
|
||
|
||
if key_blocked is not None:
|
||
# We are manually blocked. Report for how much longer we will be
|
||
if blocking_ttl_b is None: # nocoverage # defensive code, this should never happen
|
||
blocking_ttl = 0.5
|
||
else:
|
||
blocking_ttl = int(blocking_ttl_b)
|
||
return True, blocking_ttl
|
||
|
||
now = time.time()
|
||
for timestamp, (range_seconds, num_requests) in zip(rule_timestamps, rules):
|
||
# Check if the nth timestamp is newer than the associated rule. If so,
|
||
# it means we've hit our limit for this rule
|
||
if timestamp is None:
|
||
continue
|
||
|
||
boundary = float(timestamp) + range_seconds
|
||
if boundary >= now:
|
||
free = boundary - now
|
||
return True, free
|
||
|
||
return False, 0.0
|
||
|
||
@classmethod
|
||
def incr_ratelimit(cls, entity_key: str, max_api_calls: int, max_api_window: int) -> None:
|
||
"""Increases the rate-limit for the specified entity"""
|
||
list_key, set_key, _ = cls.get_keys(entity_key)
|
||
now = time.time()
|
||
|
||
# Start Redis transaction
|
||
with client.pipeline() as pipe:
|
||
count = 0
|
||
while True:
|
||
try:
|
||
# To avoid a race condition between getting the element we might trim from our list
|
||
# and removing it from our associated set, we abort this whole transaction if
|
||
# another agent manages to change our list out from under us
|
||
# When watching a value, the pipeline is set to Immediate mode
|
||
pipe.watch(list_key)
|
||
|
||
# Get the last elem that we'll trim (so we can remove it from our sorted set)
|
||
last_val = cast( # mypy doesn’t know the pipe is in immediate mode
|
||
Optional[bytes], pipe.lindex(list_key, max_api_calls - 1)
|
||
)
|
||
|
||
# Restart buffered execution
|
||
pipe.multi()
|
||
|
||
# Add this timestamp to our list
|
||
pipe.lpush(list_key, now)
|
||
|
||
# Trim our list to the oldest rule we have
|
||
pipe.ltrim(list_key, 0, max_api_calls - 1)
|
||
|
||
# Add our new value to the sorted set that we keep
|
||
# We need to put the score and val both as timestamp,
|
||
# as we sort by score but remove by value
|
||
pipe.zadd(set_key, {str(now): now})
|
||
|
||
# Remove the trimmed value from our sorted set, if there was one
|
||
if last_val is not None:
|
||
pipe.zrem(set_key, last_val)
|
||
|
||
# Set the TTL for our keys as well
|
||
api_window = max_api_window
|
||
pipe.expire(list_key, api_window)
|
||
pipe.expire(set_key, api_window)
|
||
|
||
pipe.execute()
|
||
|
||
# If no exception was raised in the execution, there were no transaction conflicts
|
||
break
|
||
except redis.WatchError: # nocoverage # Ideally we'd have a test for this.
|
||
if count > 10:
|
||
raise RateLimiterLockingError
|
||
count += 1
|
||
|
||
continue
|
||
|
||
@classmethod
|
||
def rate_limit_entity(
|
||
cls, entity_key: str, rules: List[Tuple[int, int]], max_api_calls: int, max_api_window: int
|
||
) -> Tuple[bool, float]:
|
||
ratelimited, time = cls.is_ratelimited(entity_key, rules)
|
||
|
||
if not ratelimited:
|
||
try:
|
||
cls.incr_ratelimit(entity_key, max_api_calls, max_api_window)
|
||
except RateLimiterLockingError:
|
||
logger.warning("Deadlock trying to incr_ratelimit for %s", entity_key)
|
||
# rate-limit users who are hitting the API so hard we can't update our stats.
|
||
ratelimited = True
|
||
|
||
return ratelimited, time
|
||
|
||
|
||
class RateLimitResult:
|
||
def __init__(
|
||
self, entity: RateLimitedObject, secs_to_freedom: float, over_limit: bool, remaining: int
|
||
) -> None:
|
||
if over_limit:
|
||
assert not remaining
|
||
|
||
self.entity = entity
|
||
self.secs_to_freedom = secs_to_freedom
|
||
self.over_limit = over_limit
|
||
self.remaining = remaining
|
||
|
||
|
||
class RateLimitedSpectatorAttachmentAccessByFile(RateLimitedObject):
|
||
def __init__(self, path_id: str) -> None:
|
||
self.path_id = path_id
|
||
super().__init__()
|
||
|
||
def key(self) -> str:
|
||
return f"{type(self).__name__}:{self.path_id}"
|
||
|
||
def rules(self) -> List[Tuple[int, int]]:
|
||
return settings.RATE_LIMITING_RULES["spectator_attachment_access_by_file"]
|
||
|
||
|
||
def rate_limit_spectator_attachment_access_by_file(path_id: str) -> None:
|
||
ratelimited, _ = RateLimitedSpectatorAttachmentAccessByFile(path_id).rate_limit()
|
||
if ratelimited:
|
||
raise RateLimitedError
|
||
|
||
|
||
def is_local_addr(addr: str) -> bool:
|
||
return addr in ("127.0.0.1", "::1")
|
||
|
||
|
||
@cache_with_key(lambda: "tor_ip_addresses:", timeout=60 * 60)
|
||
@circuit(failure_threshold=2, recovery_timeout=60 * 10)
|
||
def get_tor_ips() -> Set[str]:
|
||
if not settings.RATE_LIMIT_TOR_TOGETHER:
|
||
return set()
|
||
|
||
# Cron job in /etc/cron.d/fetch-tor-exit-nodes fetches this
|
||
# hourly; we cache it in memcached to prevent going to disk on
|
||
# every unauth'd request. In case of failures to read, we
|
||
# circuit-break so 2 failures cause a 10-minute backoff.
|
||
|
||
with open(settings.TOR_EXIT_NODE_FILE_PATH, "rb") as f:
|
||
exit_node_list = orjson.loads(f.read())
|
||
|
||
# This should always be non-empty; if it's empty, assume something
|
||
# went wrong with writing and treat it as a non-existent file.
|
||
# Circuit-breaking will ensure that we back off on re-reading the
|
||
# file.
|
||
if len(exit_node_list) == 0:
|
||
raise OSError("File is empty")
|
||
|
||
return set(exit_node_list)
|
||
|
||
|
||
def client_is_exempt_from_rate_limiting(request: HttpRequest) -> bool:
|
||
from zerver.lib.request import RequestNotes
|
||
|
||
# Don't rate limit requests from Django that come from our own servers,
|
||
# and don't rate-limit dev instances
|
||
client = RequestNotes.get_notes(request).client
|
||
return (client is not None and client.name.lower() == "internal") and (
|
||
is_local_addr(request.META["REMOTE_ADDR"]) or settings.DEBUG_RATE_LIMITING
|
||
)
|
||
|
||
|
||
def rate_limit_user(request: HttpRequest, user: UserProfile, domain: str) -> None:
|
||
"""Returns whether or not a user was rate limited. Will raise a RateLimitedError exception
|
||
if the user has been rate limited, otherwise returns and modifies request to contain
|
||
the rate limit information"""
|
||
if not should_rate_limit(request):
|
||
return
|
||
|
||
RateLimitedUser(user, domain=domain).rate_limit_request(request)
|
||
|
||
|
||
def rate_limit_request_by_ip(request: HttpRequest, domain: str) -> None:
|
||
if not should_rate_limit(request):
|
||
return
|
||
|
||
# REMOTE_ADDR is set by SetRemoteAddrFromRealIpHeader in conjunction
|
||
# with the nginx configuration to guarantee this to be *the* correct
|
||
# IP address to use - without worrying we'll grab the IP of a proxy.
|
||
ip_addr = request.META["REMOTE_ADDR"]
|
||
assert ip_addr
|
||
|
||
try:
|
||
# We lump all TOR exit nodes into one bucket; this prevents
|
||
# abuse from TOR, while still allowing some access to these
|
||
# endpoints for legitimate users. Checking for local
|
||
# addresses is a shortcut somewhat for ease of testing without
|
||
# mocking the TOR endpoint in every test.
|
||
if is_local_addr(ip_addr):
|
||
pass
|
||
elif ip_addr in get_tor_ips():
|
||
ip_addr = "tor-exit-node"
|
||
except (OSError, CircuitBreakerError) as err:
|
||
# In the event that we can't get an updated list of TOR exit
|
||
# nodes, assume the IP is _not_ one, and leave it unchanged.
|
||
# We log a warning so that this endpoint being taken out of
|
||
# service doesn't silently remove this functionality.
|
||
logger.warning("Failed to fetch TOR exit node list: %s", err)
|
||
pass
|
||
RateLimitedIPAddr(ip_addr, domain=domain).rate_limit_request(request)
|
||
|
||
|
||
def should_rate_limit(request: HttpRequest) -> bool:
|
||
if not settings.RATE_LIMITING:
|
||
return False
|
||
|
||
if client_is_exempt_from_rate_limiting(request):
|
||
return False
|
||
|
||
return True
|