zulip/zerver/lib/validator.py

451 lines
16 KiB
Python

'''
This module sets up a scheme for validating that arbitrary Python
objects are correctly typed. It is totally decoupled from Django,
composable, easily wrapped, and easily extended.
A validator takes two parameters--var_name and val--and returns an
error if val is not the correct type. The var_name parameter is used
to format error messages. Validators return None when there are no errors.
Example primitive validators are check_string, check_int, and check_bool.
Compound validators are created by check_list and check_dict. Note that
those functions aren't directly called for validation; instead, those
functions are called to return other functions that adhere to the validator
contract. This is similar to how Python decorators are often parameterized.
The contract for check_list and check_dict is that they get passed in other
validators to apply to their items. This allows you to build up validators
for arbitrarily complex validators. See ValidatorTestCase for example usage.
A simple example of composition is this:
check_list(check_string)('my_list', ['a', 'b', 'c']) is None
To extend this concept, it's simply a matter of writing your own validator
for any particular type of object.
'''
import re
from datetime import datetime
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, TypeVar, Union, cast
import ujson
from django.conf import settings
from django.core.exceptions import ValidationError
from django.core.validators import URLValidator, validate_email
from django.utils.translation import ugettext as _
from zerver.lib.request import JsonableError
from zerver.lib.types import ProfileFieldData, Validator
FuncT = Callable[..., Any]
TypeStructure = TypeVar("TypeStructure")
USING_TYPE_STRUCTURE = settings.LOG_API_EVENT_TYPES
# The type_structure system is designed to support using the validators in
# test_events.py to create documentation for our event formats.
#
# Ultimately, it should be possible to do this with mypy rather than a
# parallel system.
def set_type_structure(type_structure: TypeStructure) -> Callable[[FuncT], Any]:
def _set_type_structure(func: FuncT) -> FuncT:
if USING_TYPE_STRUCTURE:
func.type_structure = type_structure # type: ignore[attr-defined] # monkey-patching
return func
return _set_type_structure
@set_type_structure("str")
def check_string(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, str):
return _('{var_name} is not a string').format(var_name=var_name)
return None
@set_type_structure("str")
def check_required_string(var_name: str, val: object) -> Optional[str]:
error = check_string(var_name, val)
if error:
return error
val = cast(str, val)
if not val.strip():
return _("{item} cannot be blank.").format(item=var_name)
return None
def check_string_in(possible_values: Union[Set[str], List[str]]) -> Validator:
@set_type_structure("str")
def validator(var_name: str, val: object) -> Optional[str]:
not_str = check_string(var_name, val)
if not_str is not None:
return not_str
if val not in possible_values:
return _("Invalid {var_name}").format(var_name=var_name)
return None
return validator
@set_type_structure("str")
def check_short_string(var_name: str, val: object) -> Optional[str]:
return check_capped_string(50)(var_name, val)
def check_capped_string(max_length: int) -> Validator:
@set_type_structure("str")
def validator(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, str):
return _('{var_name} is not a string').format(var_name=var_name)
if len(val) > max_length:
return _("{var_name} is too long (limit: {max_length} characters)").format(
var_name=var_name, max_length=max_length)
return None
return validator
def check_string_fixed_length(length: int) -> Validator:
@set_type_structure("str")
def validator(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, str):
return _('{var_name} is not a string').format(var_name=var_name)
if len(val) != length:
return _("{var_name} has incorrect length {length}; should be {target_length}").format(
var_name=var_name, target_length=length, length=len(val))
return None
return validator
@set_type_structure("str")
def check_long_string(var_name: str, val: object) -> Optional[str]:
return check_capped_string(500)(var_name, val)
@set_type_structure("date")
def check_date(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, str):
return _('{var_name} is not a string').format(var_name=var_name)
try:
datetime.strptime(val, '%Y-%m-%d')
except ValueError:
return _('{var_name} is not a date').format(var_name=var_name)
return None
@set_type_structure("int")
def check_int(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, int):
return _('{var_name} is not an integer').format(var_name=var_name)
return None
def check_int_in(possible_values: List[int]) -> Validator:
@set_type_structure("int")
def validator(var_name: str, val: object) -> Optional[str]:
not_int = check_int(var_name, val)
if not_int is not None:
return not_int
if val not in possible_values:
return _("Invalid {var_name}").format(var_name=var_name)
return None
return validator
@set_type_structure("float")
def check_float(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, float):
return _('{var_name} is not a float').format(var_name=var_name)
return None
@set_type_structure("bool")
def check_bool(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, bool):
return _('{var_name} is not a boolean').format(var_name=var_name)
return None
@set_type_structure("str")
def check_color(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, str):
return _('{var_name} is not a string').format(var_name=var_name)
valid_color_pattern = re.compile(r'^#([a-fA-F0-9]{3,6})$')
matched_results = valid_color_pattern.match(val)
if not matched_results:
return _('{var_name} is not a valid hex color code').format(var_name=var_name)
return None
def check_none_or(sub_validator: Validator) -> Validator:
if USING_TYPE_STRUCTURE:
type_structure = 'none_or_' + sub_validator.type_structure # type: ignore[attr-defined] # monkey-patching
else:
type_structure = None
@set_type_structure(type_structure)
def f(var_name: str, val: object) -> Optional[str]:
if val is None:
return None
else:
return sub_validator(var_name, val)
return f
def check_list(sub_validator: Optional[Validator], length: Optional[int]=None) -> Validator:
if USING_TYPE_STRUCTURE:
if sub_validator:
type_structure = [sub_validator.type_structure] # type: ignore[attr-defined] # monkey-patching
else:
type_structure = 'list' # type: ignore[assignment] # monkey-patching
else:
type_structure = None # type: ignore[assignment] # monkey-patching
@set_type_structure(type_structure)
def f(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, list):
return _('{var_name} is not a list').format(var_name=var_name)
if length is not None and length != len(val):
return (_('{container} should have exactly {length} items').format(
container=var_name, length=length,
))
if sub_validator:
for i, item in enumerate(val):
vname = f'{var_name}[{i}]'
error = sub_validator(vname, item)
if error:
return error
return None
return f
def check_dict(required_keys: Iterable[Tuple[str, Validator]]=[],
optional_keys: Iterable[Tuple[str, Validator]]=[],
value_validator: Optional[Validator]=None,
_allow_only_listed_keys: bool=False) -> Validator:
type_structure: Dict[str, Any] = {}
@set_type_structure(type_structure)
def f(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, dict):
return _('{var_name} is not a dict').format(var_name=var_name)
for k, sub_validator in required_keys:
if k not in val:
return (_('{key_name} key is missing from {var_name}').format(
key_name=k, var_name=var_name,
))
vname = f'{var_name}["{k}"]'
error = sub_validator(vname, val[k])
if error:
return error
if USING_TYPE_STRUCTURE:
type_structure[k] = sub_validator.type_structure # type: ignore[attr-defined] # monkey-patching
for k, sub_validator in optional_keys:
if k in val:
vname = f'{var_name}["{k}"]'
error = sub_validator(vname, val[k])
if error:
return error
if USING_TYPE_STRUCTURE:
type_structure[k] = sub_validator.type_structure # type: ignore[attr-defined] # monkey-patching
if value_validator:
for key in val:
vname = f'{var_name} contains a value that'
error = value_validator(vname, val[key])
if error:
return error
if USING_TYPE_STRUCTURE:
type_structure['any'] = value_validator.type_structure # type: ignore[attr-defined] # monkey-patching
if _allow_only_listed_keys:
required_keys_set = {x[0] for x in required_keys}
optional_keys_set = {x[0] for x in optional_keys}
delta_keys = set(val.keys()) - required_keys_set - optional_keys_set
if len(delta_keys) != 0:
return _("Unexpected arguments: {}").format(", ".join(list(delta_keys)))
return None
return f
def check_dict_only(required_keys: Iterable[Tuple[str, Validator]],
optional_keys: Iterable[Tuple[str, Validator]]=[]) -> Validator:
return check_dict(required_keys, optional_keys, _allow_only_listed_keys=True)
def check_union(allowed_type_funcs: Iterable[Validator]) -> Validator:
"""
Use this validator if an argument is of a variable type (e.g. processing
properties that might be strings or booleans).
`allowed_type_funcs`: the check_* validator functions for the possible data
types for this variable.
"""
if USING_TYPE_STRUCTURE:
type_structure = f'any("{[x.type_structure for x in allowed_type_funcs]}")' # type: ignore[attr-defined] # monkey-patching
else:
type_structure = None # type: ignore[assignment] # monkey-patching
@set_type_structure(type_structure)
def enumerated_type_check(var_name: str, val: object) -> Optional[str]:
for func in allowed_type_funcs:
if not func(var_name, val):
return None
return _('{var_name} is not an allowed_type').format(var_name=var_name)
return enumerated_type_check
def equals(expected_val: object) -> Validator:
@set_type_structure(f'equals("{str(expected_val)}")')
def f(var_name: str, val: object) -> Optional[str]:
if val != expected_val:
return (_('{variable} != {expected_value} ({value} is wrong)').format(
variable=var_name, expected_value=expected_val, value=val,
))
return None
return f
@set_type_structure('str')
def validate_login_email(email: str) -> None:
try:
validate_email(email)
except ValidationError as err:
raise JsonableError(str(err.message))
@set_type_structure('str')
def check_url(var_name: str, val: object) -> Optional[str]:
# First, ensure val is a string
string_msg = check_string(var_name, val)
if string_msg is not None:
return string_msg
# Now, validate as URL
validate = URLValidator()
try:
validate(val)
return None
except ValidationError:
return _('{var_name} is not a URL').format(var_name=var_name)
@set_type_structure('str')
def check_external_account_url_pattern(var_name: str, val: object) -> Optional[str]:
error = check_string(var_name, val)
if error:
return error
val = cast(str, val)
if val.count('%(username)s') != 1:
return _('Malformed URL pattern.')
url_val = val.replace('%(username)s', 'username')
error = check_url(var_name, url_val)
if error:
return error
return None
def validate_choice_field_data(field_data: ProfileFieldData) -> Optional[str]:
"""
This function is used to validate the data sent to the server while
creating/editing choices of the choice field in Organization settings.
"""
validator = check_dict_only([
('text', check_required_string),
('order', check_required_string),
])
for key, value in field_data.items():
if not key.strip():
return _("'{item}' cannot be blank.").format(item='value')
error = validator('field_data', value)
if error:
return error
return None
def validate_choice_field(var_name: str, field_data: str, value: object) -> Optional[str]:
"""
This function is used to validate the value selected by the user against a
choice field. This is not used to validate admin data.
"""
field_data_dict = ujson.loads(field_data)
if value not in field_data_dict:
msg = _("'{value}' is not a valid choice for '{field_name}'.")
return msg.format(value=value, field_name=var_name)
return None
def check_widget_content(widget_content: object) -> Optional[str]:
if not isinstance(widget_content, dict):
return 'widget_content is not a dict'
if 'widget_type' not in widget_content:
return 'widget_type is not in widget_content'
if 'extra_data' not in widget_content:
return 'extra_data is not in widget_content'
widget_type = widget_content['widget_type']
extra_data = widget_content['extra_data']
if not isinstance(extra_data, dict):
return 'extra_data is not a dict'
if widget_type == 'zform':
if 'type' not in extra_data:
return 'zform is missing type field'
if extra_data['type'] == 'choices':
check_choices = check_list(
check_dict([
('short_name', check_string),
('long_name', check_string),
('reply', check_string),
]),
)
checker = check_dict([
('heading', check_string),
('choices', check_choices),
])
msg = checker('extra_data', extra_data)
if msg:
return msg
return None
return 'unknown zform type: ' + extra_data['type']
return 'unknown widget type: ' + widget_type
# Converter functions for use with has_request_variables
@set_type_structure('int')
def to_non_negative_int(s: str, max_int_size: int=2**32-1) -> int:
x = int(s)
if x < 0:
raise ValueError("argument is negative")
if x > max_int_size:
raise ValueError(f'{x} is too large (max {max_int_size})')
return x
def to_positive_or_allowed_int(allowed_integer: int) -> Callable[[str], int]:
@set_type_structure('int')
def convertor(s: str) -> int:
x = int(s)
if x == allowed_integer:
return x
if x == 0:
raise ValueError("argument is 0")
return to_non_negative_int(s)
return convertor
@set_type_structure('any(List[int], str)]')
def check_string_or_int_list(var_name: str, val: object) -> Optional[str]:
if isinstance(val, str):
return None
if not isinstance(val, list):
return _('{var_name} is not a string or an integer list').format(var_name=var_name)
return check_list(check_int)(var_name, val)
@set_type_structure('any(int, str)')
def check_string_or_int(var_name: str, val: object) -> Optional[str]:
if isinstance(val, str) or isinstance(val, int):
return None
return _('{var_name} is not a string or integer').format(var_name=var_name)