mirror of https://github.com/zulip/zulip.git
320 lines
12 KiB
Python
320 lines
12 KiB
Python
# Documented in https://zulip.readthedocs.io/en/latest/subsystems/queuing.html
|
|
import logging
|
|
import os
|
|
import signal
|
|
import time
|
|
from abc import ABC, abstractmethod
|
|
from collections import deque
|
|
from types import FrameType
|
|
from typing import Any, Callable, Dict, List, MutableSequence, Optional, Set, Tuple, Type, TypeVar
|
|
|
|
import orjson
|
|
import sentry_sdk
|
|
from django.conf import settings
|
|
from django.db import connection
|
|
from returns.curry import partial
|
|
from typing_extensions import override
|
|
|
|
from zerver.lib.context_managers import lockfile
|
|
from zerver.lib.db_connections import reset_queries
|
|
from zerver.lib.per_request_cache import flush_per_request_caches
|
|
from zerver.lib.pysa import mark_sanitized
|
|
from zerver.lib.queue import SimpleQueueClient
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class WorkerTimeoutError(Exception):
|
|
def __init__(self, queue_name: str, limit: int, event_count: int) -> None:
|
|
self.queue_name = queue_name
|
|
self.limit = limit
|
|
self.event_count = event_count
|
|
|
|
@override
|
|
def __str__(self) -> str:
|
|
return f"Timed out in {self.queue_name} after {self.limit * self.event_count} seconds processing {self.event_count} events"
|
|
|
|
|
|
class InterruptConsumeError(Exception):
|
|
"""
|
|
This exception is to be thrown inside event consume function
|
|
if the intention is to simply interrupt the processing
|
|
of the current event and normally continue the work of the queue.
|
|
"""
|
|
|
|
|
|
class WorkerDeclarationError(Exception):
|
|
pass
|
|
|
|
|
|
ConcreteQueueWorker = TypeVar("ConcreteQueueWorker", bound="QueueProcessingWorker")
|
|
|
|
|
|
def assign_queue(
|
|
queue_name: str,
|
|
enabled: bool = True,
|
|
is_test_queue: bool = False,
|
|
) -> Callable[[Type[ConcreteQueueWorker]], Type[ConcreteQueueWorker]]:
|
|
def decorate(clazz: Type[ConcreteQueueWorker]) -> Type[ConcreteQueueWorker]:
|
|
clazz.queue_name = queue_name
|
|
if enabled:
|
|
register_worker(queue_name, clazz, is_test_queue)
|
|
return clazz
|
|
|
|
return decorate
|
|
|
|
|
|
worker_classes: Dict[str, Type["QueueProcessingWorker"]] = {}
|
|
test_queues: Set[str] = set()
|
|
|
|
|
|
def register_worker(
|
|
queue_name: str, clazz: Type["QueueProcessingWorker"], is_test_queue: bool = False
|
|
) -> None:
|
|
worker_classes[queue_name] = clazz
|
|
if is_test_queue:
|
|
test_queues.add(queue_name)
|
|
|
|
|
|
def check_and_send_restart_signal() -> None:
|
|
try:
|
|
if not connection.is_usable():
|
|
logging.warning("*** Sending self SIGUSR1 to trigger a restart.")
|
|
os.kill(os.getpid(), signal.SIGUSR1)
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
class QueueProcessingWorker(ABC):
|
|
queue_name: str
|
|
MAX_CONSUME_SECONDS: Optional[int] = 30
|
|
CONSUME_ITERATIONS_BEFORE_UPDATE_STATS_NUM = 50
|
|
MAX_SECONDS_BEFORE_UPDATE_STATS = 30
|
|
|
|
# How many un-acknowledged events the worker should have on hand,
|
|
# fetched from the rabbitmq server. Larger values may be more
|
|
# performant, but if queues are large, cause more network IO at
|
|
# startup and steady-state memory.
|
|
PREFETCH = 100
|
|
|
|
def __init__(self, threaded: bool = False, disable_timeout: bool = False) -> None:
|
|
self.q: Optional[SimpleQueueClient] = None
|
|
self.threaded = threaded
|
|
self.disable_timeout = disable_timeout
|
|
if not hasattr(self, "queue_name"):
|
|
raise WorkerDeclarationError("Queue worker declared without queue_name")
|
|
|
|
self.initialize_statistics()
|
|
|
|
def initialize_statistics(self) -> None:
|
|
self.queue_last_emptied_timestamp = time.time()
|
|
self.consumed_since_last_emptied = 0
|
|
self.recent_consume_times: MutableSequence[Tuple[int, float]] = deque(maxlen=50)
|
|
self.consume_iteration_counter = 0
|
|
self.idle = True
|
|
self.last_statistics_update_time = 0.0
|
|
|
|
self.update_statistics()
|
|
|
|
@sentry_sdk.trace
|
|
def update_statistics(self) -> None:
|
|
total_seconds = sum(seconds for _, seconds in self.recent_consume_times)
|
|
total_events = sum(events_number for events_number, _ in self.recent_consume_times)
|
|
if total_events == 0:
|
|
recent_average_consume_time = None
|
|
else:
|
|
recent_average_consume_time = total_seconds / total_events
|
|
stats_dict = dict(
|
|
update_time=time.time(),
|
|
recent_average_consume_time=recent_average_consume_time,
|
|
queue_last_emptied_timestamp=self.queue_last_emptied_timestamp,
|
|
consumed_since_last_emptied=self.consumed_since_last_emptied,
|
|
)
|
|
|
|
os.makedirs(settings.QUEUE_STATS_DIR, exist_ok=True)
|
|
|
|
fname = f"{self.queue_name}.stats"
|
|
fn = os.path.join(settings.QUEUE_STATS_DIR, fname)
|
|
with lockfile(fn + ".lock"):
|
|
tmp_fn = fn + ".tmp"
|
|
with open(tmp_fn, "wb") as f:
|
|
f.write(
|
|
orjson.dumps(stats_dict, option=orjson.OPT_APPEND_NEWLINE | orjson.OPT_INDENT_2)
|
|
)
|
|
os.rename(tmp_fn, fn)
|
|
self.last_statistics_update_time = time.time()
|
|
|
|
def get_remaining_local_queue_size(self) -> int:
|
|
if self.q is not None:
|
|
return self.q.local_queue_size()
|
|
else:
|
|
# This is a special case that will happen if we're operating without
|
|
# using RabbitMQ (e.g. in tests). In that case there's no queuing to speak of
|
|
# and the only reasonable size to return is 0.
|
|
return 0
|
|
|
|
@abstractmethod
|
|
def consume(self, data: Dict[str, Any]) -> None:
|
|
pass
|
|
|
|
def do_consume(
|
|
self, consume_func: Callable[[List[Dict[str, Any]]], None], events: List[Dict[str, Any]]
|
|
) -> None:
|
|
consume_time_seconds: Optional[float] = None
|
|
with sentry_sdk.start_transaction(
|
|
op="task",
|
|
name=f"consume {self.queue_name}",
|
|
custom_sampling_context={"queue": self.queue_name},
|
|
):
|
|
sentry_sdk.add_breadcrumb(
|
|
type="debug",
|
|
category="queue_processor",
|
|
message=f"Consuming {self.queue_name}",
|
|
data={"events": events, "local_queue_size": self.get_remaining_local_queue_size()},
|
|
)
|
|
try:
|
|
if self.idle:
|
|
# We're reactivating after having gone idle due to emptying the queue.
|
|
# We should update the stats file to keep it fresh and to make it clear
|
|
# that the queue started processing, in case the event we're about to process
|
|
# makes us freeze.
|
|
self.idle = False
|
|
self.update_statistics()
|
|
|
|
time_start = time.time()
|
|
if self.MAX_CONSUME_SECONDS and not self.threaded and not self.disable_timeout:
|
|
try:
|
|
signal.signal(
|
|
signal.SIGALRM,
|
|
partial(self.timer_expired, self.MAX_CONSUME_SECONDS, events),
|
|
)
|
|
try:
|
|
signal.alarm(self.MAX_CONSUME_SECONDS * len(events))
|
|
consume_func(events)
|
|
finally:
|
|
signal.alarm(0)
|
|
finally:
|
|
signal.signal(signal.SIGALRM, signal.SIG_DFL)
|
|
else:
|
|
consume_func(events)
|
|
consume_time_seconds = time.time() - time_start
|
|
self.consumed_since_last_emptied += len(events)
|
|
except Exception as e:
|
|
self._handle_consume_exception(events, e)
|
|
finally:
|
|
flush_per_request_caches()
|
|
reset_queries()
|
|
|
|
with sentry_sdk.start_span(description="statistics"):
|
|
if consume_time_seconds is not None:
|
|
self.recent_consume_times.append((len(events), consume_time_seconds))
|
|
|
|
remaining_local_queue_size = self.get_remaining_local_queue_size()
|
|
if remaining_local_queue_size == 0:
|
|
self.queue_last_emptied_timestamp = time.time()
|
|
self.consumed_since_last_emptied = 0
|
|
# We've cleared all the events from the queue, so we don't
|
|
# need to worry about the small overhead of doing a disk write.
|
|
# We take advantage of this to update the stats file to keep it fresh,
|
|
# especially since the queue might go idle until new events come in.
|
|
self.update_statistics()
|
|
self.idle = True
|
|
else:
|
|
self.consume_iteration_counter += 1
|
|
if (
|
|
self.consume_iteration_counter
|
|
>= self.CONSUME_ITERATIONS_BEFORE_UPDATE_STATS_NUM
|
|
or time.time() - self.last_statistics_update_time
|
|
>= self.MAX_SECONDS_BEFORE_UPDATE_STATS
|
|
):
|
|
self.consume_iteration_counter = 0
|
|
self.update_statistics()
|
|
|
|
def consume_single_event(self, event: Dict[str, Any]) -> None:
|
|
consume_func = lambda events: self.consume(events[0])
|
|
self.do_consume(consume_func, [event])
|
|
|
|
def timer_expired(
|
|
self, limit: int, events: List[Dict[str, Any]], signal: int, frame: Optional[FrameType]
|
|
) -> None:
|
|
raise WorkerTimeoutError(self.queue_name, limit, len(events))
|
|
|
|
def _handle_consume_exception(self, events: List[Dict[str, Any]], exception: Exception) -> None:
|
|
if isinstance(exception, InterruptConsumeError):
|
|
# The exception signals that no further error handling
|
|
# is needed and the worker can proceed.
|
|
return
|
|
|
|
with sentry_sdk.configure_scope() as scope:
|
|
scope.set_context(
|
|
"events",
|
|
{
|
|
"data": events,
|
|
"queue_name": self.queue_name,
|
|
},
|
|
)
|
|
if isinstance(exception, WorkerTimeoutError):
|
|
with sentry_sdk.push_scope() as scope:
|
|
scope.fingerprint = ["worker-timeout", self.queue_name]
|
|
logging.exception(exception, stack_info=True)
|
|
else:
|
|
logging.exception(
|
|
"Problem handling data on queue %s", self.queue_name, stack_info=True
|
|
)
|
|
if not os.path.exists(settings.QUEUE_ERROR_DIR):
|
|
os.mkdir(settings.QUEUE_ERROR_DIR) # nocoverage
|
|
# Use 'mark_sanitized' to prevent Pysa from detecting this false positive
|
|
# flow. 'queue_name' is always a constant string.
|
|
fname = mark_sanitized(f"{self.queue_name}.errors")
|
|
fn = os.path.join(settings.QUEUE_ERROR_DIR, fname)
|
|
line = f"{time.asctime()}\t{orjson.dumps(events).decode()}\n"
|
|
lock_fn = fn + ".lock"
|
|
with lockfile(lock_fn):
|
|
with open(fn, "a") as f:
|
|
f.write(line)
|
|
check_and_send_restart_signal()
|
|
|
|
def setup(self) -> None:
|
|
self.q = SimpleQueueClient(prefetch=self.PREFETCH)
|
|
|
|
def start(self) -> None:
|
|
assert self.q is not None
|
|
self.initialize_statistics()
|
|
self.q.start_json_consumer(
|
|
self.queue_name,
|
|
lambda events: self.consume_single_event(events[0]),
|
|
)
|
|
|
|
def stop(self) -> None: # nocoverage
|
|
assert self.q is not None
|
|
self.q.stop_consuming()
|
|
|
|
|
|
class LoopQueueProcessingWorker(QueueProcessingWorker):
|
|
sleep_delay = 1
|
|
batch_size = 100
|
|
|
|
@override
|
|
def setup(self) -> None:
|
|
self.q = SimpleQueueClient(prefetch=max(self.PREFETCH, self.batch_size))
|
|
|
|
@override
|
|
def start(self) -> None: # nocoverage
|
|
assert self.q is not None
|
|
self.initialize_statistics()
|
|
self.q.start_json_consumer(
|
|
self.queue_name,
|
|
lambda events: self.do_consume(self.consume_batch, events),
|
|
batch_size=self.batch_size,
|
|
timeout=self.sleep_delay,
|
|
)
|
|
|
|
@abstractmethod
|
|
def consume_batch(self, events: List[Dict[str, Any]]) -> None:
|
|
pass
|
|
|
|
@override
|
|
def consume(self, event: Dict[str, Any]) -> None:
|
|
"""In LoopQueueProcessingWorker, consume is used just for automated tests"""
|
|
self.consume_batch([event])
|