mirror of https://github.com/zulip/zulip.git
86 lines
3.5 KiB
Python
86 lines
3.5 KiB
Python
import csv
|
|
from timeit import timeit
|
|
from typing import Any, Union
|
|
|
|
from django.core.management.base import BaseCommand, CommandParser
|
|
|
|
from zerver.lib.queue import SimpleQueueClient, queue_json_publish
|
|
from zerver.worker.queue_processors import BatchNoopWorker, NoopWorker
|
|
|
|
|
|
class Command(BaseCommand):
|
|
help = """Times the overhead of enqueuing and dequeuing messages from RabbitMQ."""
|
|
|
|
def add_arguments(self, parser: CommandParser) -> None:
|
|
parser.add_argument(
|
|
"--count", help="Number of messages to enqueue", default=10000, type=int
|
|
)
|
|
parser.add_argument("--reps", help="Iterations of enqueue/dequeue", default=1, type=int)
|
|
parser.add_argument("--batch", help="Enables batch dequeuing", action="store_true")
|
|
parser.add_argument("--csv", help="Path to CSV output", default="rabbitmq-timings.csv")
|
|
parser.add_argument(
|
|
"--prefetches",
|
|
help="Limits the prefetch size; RabbitMQ defaults to unbounded (0)",
|
|
default=[0],
|
|
nargs="+",
|
|
type=int,
|
|
)
|
|
parser.add_argument(
|
|
"--slow",
|
|
help="Which request numbers should take 60s (1-based)",
|
|
action="append",
|
|
type=int,
|
|
default=[],
|
|
)
|
|
|
|
def handle(self, *args: Any, **options: Any) -> None:
|
|
print("Purging queue...")
|
|
queue = SimpleQueueClient()
|
|
queue_name = "noop_batch" if options["batch"] else "noop"
|
|
queue.ensure_queue(queue_name, lambda channel: channel.queue_purge("noop"))
|
|
count = options["count"]
|
|
reps = options["reps"]
|
|
|
|
with open(options["csv"], "w", newline="") as csvfile:
|
|
writer = csv.DictWriter(
|
|
csvfile, fieldnames=["Queue size", "Queue type", "Prefetch", "Rate"]
|
|
)
|
|
writer.writeheader()
|
|
|
|
for prefetch in options["prefetches"]:
|
|
print(f"Queue size {count}, prefetch {prefetch}...")
|
|
worker: Union[NoopWorker, BatchNoopWorker] = NoopWorker(count, options["slow"])
|
|
if options["batch"]:
|
|
worker = BatchNoopWorker(count, options["slow"])
|
|
if prefetch > 0 and prefetch < worker.batch_size:
|
|
print(
|
|
f" Skipping, as prefetch {prefetch} is less than batch size {worker.batch_size}"
|
|
)
|
|
continue
|
|
worker.setup()
|
|
|
|
assert worker.q is not None
|
|
assert worker.q.channel is not None
|
|
worker.q.channel.basic_qos(prefetch_count=prefetch)
|
|
|
|
total_time = 0.0
|
|
for i in range(1, reps + 1):
|
|
worker.consumed = 0
|
|
timeit(
|
|
lambda: queue_json_publish(queue_name, {}),
|
|
number=count,
|
|
)
|
|
duration = timeit(worker.start, number=1)
|
|
print(f" {i}/{reps}: {count}/{duration}s = {count / duration}/s")
|
|
total_time += duration
|
|
writer.writerow(
|
|
{
|
|
"Queue size": count,
|
|
"Queue type": queue_name,
|
|
"Prefetch": prefetch,
|
|
"Rate": count / duration,
|
|
}
|
|
)
|
|
csvfile.flush()
|
|
print(f" Overall: {reps * count}/{total_time}s = {(reps * count) / total_time}/s")
|