mirror of https://github.com/zulip/zulip.git
187 lines
5.7 KiB
Python
187 lines
5.7 KiB
Python
# -*- coding: utf-8 -*-
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
|
|
from typing import Any, Callable, Optional, Sequence, TypeVar, Iterable, Tuple
|
|
from six import text_type, binary_type
|
|
import base64
|
|
import errno
|
|
import hashlib
|
|
import heapq
|
|
import itertools
|
|
import os
|
|
from time import sleep
|
|
|
|
from django.conf import settings
|
|
from six.moves import range
|
|
from zerver.lib.str_utils import force_text
|
|
|
|
T = TypeVar('T')
|
|
|
|
def statsd_key(val, clean_periods=False):
|
|
# type: (Any, bool) -> str
|
|
if not isinstance(val, str):
|
|
val = str(val)
|
|
|
|
if ':' in val:
|
|
val = val.split(':')[0]
|
|
val = val.replace('-', "_")
|
|
if clean_periods:
|
|
val = val.replace('.', '_')
|
|
|
|
return val
|
|
|
|
class StatsDWrapper(object):
|
|
"""Transparently either submit metrics to statsd
|
|
or do nothing without erroring out"""
|
|
|
|
# Backported support for gauge deltas
|
|
# as our statsd server supports them but supporting
|
|
# pystatsd is not released yet
|
|
def _our_gauge(self, stat, value, rate=1, delta=False):
|
|
# type: (str, float, float, bool) -> str
|
|
"""Set a gauge value."""
|
|
from django_statsd.clients import statsd
|
|
if delta:
|
|
value_str = '%+g|g' % (value,)
|
|
else:
|
|
value_str = '%g|g' % (value,)
|
|
statsd._send(stat, value_str, rate)
|
|
|
|
def __getattr__(self, name):
|
|
# type: (str) -> Any
|
|
# Hand off to statsd if we have it enabled
|
|
# otherwise do nothing
|
|
if name in ['timer', 'timing', 'incr', 'decr', 'gauge']:
|
|
if settings.STATSD_HOST != '':
|
|
from django_statsd.clients import statsd
|
|
if name == 'gauge':
|
|
return self._our_gauge
|
|
else:
|
|
return getattr(statsd, name)
|
|
else:
|
|
return lambda *args, **kwargs: None
|
|
|
|
raise AttributeError
|
|
|
|
statsd = StatsDWrapper()
|
|
|
|
# Runs the callback with slices of all_list of a given batch_size
|
|
def run_in_batches(all_list, batch_size, callback, sleep_time = 0, logger = None):
|
|
# type: (Sequence[T], int, Callable[[Sequence[T]], None], int, Optional[Callable[[str], None]]) -> None
|
|
if len(all_list) == 0:
|
|
return
|
|
|
|
limit = (len(all_list) // batch_size) + 1;
|
|
for i in range(limit):
|
|
start = i*batch_size
|
|
end = (i+1) * batch_size
|
|
if end >= len(all_list):
|
|
end = len(all_list)
|
|
batch = all_list[start:end]
|
|
|
|
if logger:
|
|
logger("Executing %s in batch %s of %s" % (end-start, i+1, limit))
|
|
|
|
callback(batch)
|
|
|
|
if i != limit - 1:
|
|
sleep(sleep_time)
|
|
|
|
def make_safe_digest(string, hash_func=hashlib.sha1):
|
|
# type: (text_type, Callable[[binary_type], Any]) -> text_type
|
|
"""
|
|
return a hex digest of `string`.
|
|
"""
|
|
# hashlib.sha1, md5, etc. expect bytes, so non-ASCII strings must
|
|
# be encoded.
|
|
return force_text(hash_func(string.encode('utf-8')).hexdigest())
|
|
|
|
|
|
def log_statsd_event(name):
|
|
# type: (str) -> None
|
|
"""
|
|
Sends a single event to statsd with the desired name and the current timestamp
|
|
|
|
This can be used to provide vertical lines in generated graphs,
|
|
for example when doing a prod deploy, bankruptcy request, or
|
|
other one-off events
|
|
|
|
Note that to draw this event as a vertical line in graphite
|
|
you can use the drawAsInfinite() command
|
|
"""
|
|
event_name = "events.%s" % (name,)
|
|
statsd.incr(event_name)
|
|
|
|
def generate_random_token(length):
|
|
# type: (int) -> text_type
|
|
return base64.b16encode(os.urandom(length // 2)).decode('utf-8').lower()
|
|
|
|
def mkdir_p(path):
|
|
# type: (str) -> None
|
|
# Python doesn't have an analog to `mkdir -p` < Python 3.2.
|
|
try:
|
|
os.makedirs(path)
|
|
except OSError as e:
|
|
if e.errno == errno.EEXIST and os.path.isdir(path):
|
|
pass
|
|
else:
|
|
raise
|
|
|
|
def query_chunker(queries, id_collector=None, chunk_size=1000, db_chunk_size=None):
|
|
# type: (List[Any], Set[int], int, int) -> Iterable[Any]
|
|
|
|
'''
|
|
This merges one or more Django ascending-id queries into
|
|
a generator that returns chunks of chunk_size row objects
|
|
during each yield, preserving id order across all results..
|
|
|
|
Queries should satisfy these conditions:
|
|
- They should be Django filters.
|
|
- They should return Django objects with "id" attributes.
|
|
- They should be disjoint.
|
|
|
|
The generator also populates id_collector, which we use
|
|
internally to enforce unique ids, but which the caller
|
|
can pass in to us if they want the side effect of collecting
|
|
all ids.
|
|
'''
|
|
if db_chunk_size is None:
|
|
db_chunk_size = chunk_size // len(queries)
|
|
|
|
assert db_chunk_size >= 2
|
|
assert chunk_size >= 2
|
|
|
|
if id_collector is not None:
|
|
assert(len(id_collector) == 0)
|
|
else:
|
|
id_collector = set()
|
|
|
|
def chunkify(q, i):
|
|
# type: (Any, int) -> Iterable[Tuple[int, int, Any]]
|
|
q = q.order_by('id')
|
|
min_id = -1
|
|
while True:
|
|
rows = list(q.filter(id__gt=min_id)[0:db_chunk_size])
|
|
if len(rows) == 0:
|
|
break
|
|
for row in rows:
|
|
yield (row.id, i, row)
|
|
min_id = rows[-1].id
|
|
|
|
iterators = [chunkify(q, i) for i, q in enumerate(queries)]
|
|
merged_query = heapq.merge(*iterators)
|
|
|
|
while True:
|
|
tup_chunk = list(itertools.islice(merged_query, 0, chunk_size))
|
|
if len(tup_chunk) == 0:
|
|
break
|
|
|
|
# Do duplicate-id management here.
|
|
tup_ids = set([tup[0] for tup in tup_chunk])
|
|
assert len(tup_ids) == len(tup_chunk)
|
|
assert len(tup_ids.intersection(id_collector)) == 0
|
|
id_collector.update(tup_ids)
|
|
|
|
yield [row for row_id, i, row in tup_chunk]
|