#!/usr/bin/env python2.7 # # Generates % delta activity metrics from graphite/statsd data # from __future__ import print_function from __future__ import absolute_import from __future__ import division import os, sys from six.moves import range sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..')) import optparse from datetime import timedelta, datetime from zerver.lib.timestamp import datetime_to_timestamp from zerver.lib.utils import statsd_key import requests # Workaround to support the Python-requests 1.0 transition of .json # from a property to a function requests_json_is_function = callable(requests.Response.json) def extract_json_response(resp): if requests_json_is_function: return resp.json() else: return resp.json def get_data_url(buckets, realm): realm_key = statsd_key(realm, True) # This is the slightly-cleaned up JSON api version of https://graphiti.zulip.net/graphs/945c7aafc2d # # Fetches 1 month worth of data DATA_URL="https://stats1.zulip.net:444/render/?from=-1000d&format=json" for bucket in buckets: if realm != 'all': statsd_target = "stats.gauges.staging.users.active.%s.%s" % (realm_key, bucket) DATA_URL += "&target=%s" % (statsd_target,) else: # all means adding up all realms, but exclude the .all. metrics since that would double things DATA_URL += "&target=sum(exclude(stats.gauges.staging.users.active.*.%s, 'all'))" % (bucket,) return DATA_URL def get_data(url, username, pw): from requests.auth import HTTPDigestAuth res = requests.get(url, auth=HTTPDigestAuth(username, pw), verify=False) if res.status_code != 200: print("Failed to fetch data url: %s" % (res.error,)) return [] return extract_json_response(res) def noon_of(day=datetime.now()): return datetime(year=day.year, month=day.month, day=day.day, hour=12) def points_during_day(data, noon): """Returns all the points in the dataset that occur in the 12 hours around the datetime object that is passed in. data must be sorted.""" before =datetime_to_timestamp(noon - timedelta(hours=12)) after = datetime_to_timestamp(noon + timedelta(hours=12)) between = [pt for pt in data if pt[1] > before and pt[1] < after] return between def best_during_day(data, day): valid = sorted(points_during_day(data, day), key=lambda pt: pt[0], reverse=True) if len(valid): return valid[0][0] else: return None def percent_diff(prev, cur): if prev is None or cur is None: return None if cur == 0 and prev == 0: return "" if prev == 0: return "NaN" return "%.02f%%" % (((cur - prev) / prev) * 100,) def parse_data(data, today): def print_results(all_days, days, compare_with_last=False): first_data_point = True best_last_time = 0 for i in all_days: day = today - timedelta(days=i) # Ignore weekends if day.weekday() in days: best = best_during_day(metric['datapoints'], day) if best is None: continue if not compare_with_last: percent = percent_diff(best, best_today) else: if first_data_point: percent = "" first_data_point = False else: percent = percent_diff(best_last_time, best) if best is not None: print("Last %s, %s %s ago:\t%.01f\t\t%s" \ % (day.strftime("%A"), i, "days", best, percent)) best_last_time = best for metric in data: # print "Got %s with data points %s" % (metric['target'], len(metric['datapoints'])) # Calculate % between peak 2hr and 10min across each day and week metric['datapoints'].sort(key=lambda p: p[1]) best_today = best_during_day(metric['datapoints'], today) print("Date\t\t\t\tUsers\t\tChange from then to today") print("Today, 0 days ago:\t\t%.01f" % (best_today,)) print_results(range(1, 1000), [0, 1, 2, 3, 4, 7]) print("\n\nWeekly Wednesday results") print("Date\t\t\t\tUsers\t\tDelta from previous week") print_results(reversed(range(1, 1000)), [2], True) parser = optparse.OptionParser(r""" %prog --user username --password pw [--start-from unixtimestamp] Generates activity statistics with detailed week-over-week percentage change """) parser.add_option('--user', help='Graphite usernarme', metavar='USER') parser.add_option('--password', help='Graphite password', metavar='PASSWORD') parser.add_option('--start-from', help='What day to consider as \'today\' when calculating stats as a Unix timestamp', metavar='STARTDATE', default='today') parser.add_option('--realm', help='Which realm to query', default='all') parser.add_option('--bucket', help='Which bucket to query', default='12hr') if __name__ == '__main__': (options, args) = parser.parse_args() if not options.user or not options.password: parser.error("You must enter a username and password to log into graphite with") startfrom = noon_of(day=datetime.now()) if options.start_from != 'today': startfrom = noon_of(day=datetime.fromtimestamp(int(options.start_from))) print("Using baseline of today as %s" % (startfrom,)) realm_key = statsd_key(options.realm, True) buckets = [options.bucket] # This is the slightly-cleaned up JSON api version of https://graphiti.zulip.net/graphs/945c7aafc2d # # Fetches 1 month worth of data DATA_URL = get_data_url(buckets, options.realm) data = get_data(DATA_URL, options.user, options.password) parse_data(data, startfrom)