# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from typing import Any, Callable, Optional, Sequence, TypeVar, Iterable, Tuple from six import text_type, binary_type import base64 import errno import hashlib import heapq import itertools import os from time import sleep from django.conf import settings from six.moves import range from zerver.lib.str_utils import force_text T = TypeVar('T') def statsd_key(val, clean_periods=False): # type: (Any, bool) -> str if not isinstance(val, str): val = str(val) if ':' in val: val = val.split(':')[0] val = val.replace('-', "_") if clean_periods: val = val.replace('.', '_') return val class StatsDWrapper(object): """Transparently either submit metrics to statsd or do nothing without erroring out""" # Backported support for gauge deltas # as our statsd server supports them but supporting # pystatsd is not released yet def _our_gauge(self, stat, value, rate=1, delta=False): # type: (str, float, float, bool) -> str """Set a gauge value.""" from django_statsd.clients import statsd if delta: value_str = '%+g|g' % (value,) else: value_str = '%g|g' % (value,) statsd._send(stat, value_str, rate) def __getattr__(self, name): # type: (str) -> Any # Hand off to statsd if we have it enabled # otherwise do nothing if name in ['timer', 'timing', 'incr', 'decr', 'gauge']: if settings.STATSD_HOST != '': from django_statsd.clients import statsd if name == 'gauge': return self._our_gauge else: return getattr(statsd, name) else: return lambda *args, **kwargs: None raise AttributeError statsd = StatsDWrapper() # Runs the callback with slices of all_list of a given batch_size def run_in_batches(all_list, batch_size, callback, sleep_time = 0, logger = None): # type: (Sequence[T], int, Callable[[Sequence[T]], None], int, Optional[Callable[[str], None]]) -> None if len(all_list) == 0: return limit = (len(all_list) // batch_size) + 1; for i in range(limit): start = i*batch_size end = (i+1) * batch_size if end >= len(all_list): end = len(all_list) batch = all_list[start:end] if logger: logger("Executing %s in batch %s of %s" % (end-start, i+1, limit)) callback(batch) if i != limit - 1: sleep(sleep_time) def make_safe_digest(string, hash_func=hashlib.sha1): # type: (text_type, Callable[[binary_type], Any]) -> text_type """ return a hex digest of `string`. """ # hashlib.sha1, md5, etc. expect bytes, so non-ASCII strings must # be encoded. return force_text(hash_func(string.encode('utf-8')).hexdigest()) def log_statsd_event(name): # type: (str) -> None """ Sends a single event to statsd with the desired name and the current timestamp This can be used to provide vertical lines in generated graphs, for example when doing a prod deploy, bankruptcy request, or other one-off events Note that to draw this event as a vertical line in graphite you can use the drawAsInfinite() command """ event_name = "events.%s" % (name,) statsd.incr(event_name) def generate_random_token(length): # type: (int) -> text_type return base64.b16encode(os.urandom(length // 2)).decode('utf-8').lower() def mkdir_p(path): # type: (str) -> None # Python doesn't have an analog to `mkdir -p` < Python 3.2. try: os.makedirs(path) except OSError as e: if e.errno == errno.EEXIST and os.path.isdir(path): pass else: raise def query_chunker(queries, id_collector=None, chunk_size=1000, db_chunk_size=None): # type: (List[Any], Set[int], int, int) -> Iterable[Any] ''' This merges one or more Django ascending-id queries into a generator that returns chunks of chunk_size row objects during each yield, preserving id order across all results.. Queries should satisfy these conditions: - They should be Django filters. - They should return Django objects with "id" attributes. - They should be disjoint. The generator also populates id_collector, which we use internally to enforce unique ids, but which the caller can pass in to us if they want the side effect of collecting all ids. ''' if db_chunk_size is None: db_chunk_size = chunk_size // len(queries) assert db_chunk_size >= 2 assert chunk_size >= 2 if id_collector is not None: assert(len(id_collector) == 0) else: id_collector = set() def chunkify(q, i): # type: (Any, int) -> Iterable[Tuple[int, int, Any]] q = q.order_by('id') min_id = -1 while True: rows = list(q.filter(id__gt=min_id)[0:db_chunk_size]) if len(rows) == 0: break for row in rows: yield (row.id, i, row) min_id = rows[-1].id iterators = [chunkify(q, i) for i, q in enumerate(queries)] merged_query = heapq.merge(*iterators) while True: tup_chunk = list(itertools.islice(merged_query, 0, chunk_size)) if len(tup_chunk) == 0: break # Do duplicate-id management here. tup_ids = set([tup[0] for tup in tup_chunk]) assert len(tup_ids) == len(tup_chunk) assert len(tup_ids.intersection(id_collector)) == 0 id_collector.update(tup_ids) yield [row for row_id, i, row in tup_chunk]