import datetime import logging from collections import defaultdict from typing import Any, Dict, List, Set, Tuple, Union from django.conf import settings from django.utils.timezone import now as timezone_now from confirmation.models import one_click_unsubscribe_link from zerver.context_processors import common_context from zerver.lib.email_notifications import build_message_list from zerver.lib.logging_util import log_to_file from zerver.lib.queue import queue_json_publish from zerver.lib.send_email import FromAddress, send_future_email from zerver.lib.url_encoding import encode_stream from zerver.models import ( Message, Realm, RealmAuditLog, Recipient, Subscription, UserActivity, UserProfile, get_active_streams, get_user_profile_by_id, ) logger = logging.getLogger(__name__) log_to_file(logger, settings.DIGEST_LOG_PATH) DIGEST_CUTOFF = 5 # Digests accumulate 2 types of interesting traffic for a user: # 1. New streams # 2. Interesting stream traffic, as determined by the longest and most # diversely comment upon topics. def inactive_since(user_profile: UserProfile, cutoff: datetime.datetime) -> bool: # Hasn't used the app in the last DIGEST_CUTOFF (5) days. most_recent_visit = [row.last_visit for row in UserActivity.objects.filter( user_profile=user_profile)] if not most_recent_visit: # This person has never used the app. return True last_visit = max(most_recent_visit) return last_visit < cutoff def should_process_digest(realm_str: str) -> bool: if realm_str in settings.SYSTEM_ONLY_REALMS: # Don't try to send emails to system-only realms return False return True # Changes to this should also be reflected in # zerver/worker/queue_processors.py:DigestWorker.consume() def queue_digest_recipient(user_profile: UserProfile, cutoff: datetime.datetime) -> None: # Convert cutoff to epoch seconds for transit. event = {"user_profile_id": user_profile.id, "cutoff": cutoff.strftime('%s')} queue_json_publish("digest_emails", event) def enqueue_emails(cutoff: datetime.datetime) -> None: if not settings.SEND_DIGEST_EMAILS: return weekday = timezone_now().weekday() for realm in Realm.objects.filter(deactivated=False, digest_emails_enabled=True, digest_weekday=weekday): if not should_process_digest(realm.string_id): continue user_profiles = UserProfile.objects.filter( realm=realm, is_active=True, is_bot=False, enable_digest_emails=True) for user_profile in user_profiles: if inactive_since(user_profile, cutoff): queue_digest_recipient(user_profile, cutoff) logger.info( "User %s is inactive, queuing for potential digest", user_profile.id, ) def gather_hot_conversations(user_profile: UserProfile, messages: List[Message]) -> List[Dict[str, Any]]: # Gather stream conversations of 2 types: # 1. long conversations # 2. conversations where many different people participated # # Returns a list of dictionaries containing the templating # information for each hot conversation. conversation_length: Dict[Tuple[int, str], int] = defaultdict(int) conversation_messages: Dict[Tuple[int, str], List[Message]] = defaultdict(list) conversation_diversity: Dict[Tuple[int, str], Set[str]] = defaultdict(set) for message in messages: key = (message.recipient.type_id, message.topic_name()) conversation_messages[key].append(message) if not message.sent_by_human(): # Don't include automated messages in the count. continue conversation_diversity[key].add( message.sender.full_name) conversation_length[key] += 1 diversity_list = list(conversation_diversity.items()) diversity_list.sort(key=lambda entry: len(entry[1]), reverse=True) length_list = list(conversation_length.items()) length_list.sort(key=lambda entry: entry[1], reverse=True) # Get up to the 4 best conversations from the diversity list # and length list, filtering out overlapping conversations. hot_conversations = [elt[0] for elt in diversity_list[:2]] for candidate, _ in length_list: if candidate not in hot_conversations: hot_conversations.append(candidate) if len(hot_conversations) >= 4: break # There was so much overlap between the diversity and length lists that we # still have < 4 conversations. Try to use remaining diversity items to pad # out the hot conversations. num_convos = len(hot_conversations) if num_convos < 4: hot_conversations.extend([elt[0] for elt in diversity_list[num_convos:4]]) hot_conversation_render_payloads = [] for h in hot_conversations: users = list(conversation_diversity[h]) count = conversation_length[h] messages = conversation_messages[h] # We'll display up to 2 messages from the conversation. first_few_messages = messages[:2] teaser_data = {"participants": users, "count": count - len(first_few_messages), "first_few_messages": build_message_list( user_profile, first_few_messages)} hot_conversation_render_payloads.append(teaser_data) return hot_conversation_render_payloads def gather_new_streams(user_profile: UserProfile, threshold: datetime.datetime) -> Tuple[int, Dict[str, List[str]]]: if user_profile.can_access_public_streams(): new_streams = list(get_active_streams(user_profile.realm).filter( invite_only=False, date_created__gt=threshold)) else: new_streams = [] base_url = f"{user_profile.realm.uri}/#narrow/stream/" streams_html = [] streams_plain = [] for stream in new_streams: narrow_url = base_url + encode_stream(stream.id, stream.name) stream_link = f"{stream.name}" streams_html.append(stream_link) streams_plain.append(stream.name) return len(new_streams), {"html": streams_html, "plain": streams_plain} def enough_traffic(hot_conversations: str, new_streams: int) -> bool: return bool(hot_conversations or new_streams) def handle_digest_email(user_profile_id: int, cutoff: float, render_to_web: bool = False) -> Union[None, Dict[str, Any]]: user_profile = get_user_profile_by_id(user_profile_id) # Convert from epoch seconds to a datetime object. cutoff_date = datetime.datetime.fromtimestamp(int(cutoff), tz=datetime.timezone.utc) context = common_context(user_profile) # Start building email template data. context.update({ 'unsubscribe_link': one_click_unsubscribe_link(user_profile, "digest"), }) home_view_streams = Subscription.objects.filter( user_profile=user_profile, recipient__type=Recipient.STREAM, active=True, is_muted=False).values_list('recipient__type_id', flat=True) if not user_profile.long_term_idle: stream_ids = home_view_streams else: stream_ids = exclude_subscription_modified_streams(user_profile, home_view_streams, cutoff_date) # Fetch list of all messages sent after cutoff_date where the user is subscribed messages = Message.objects.filter( recipient__type=Recipient.STREAM, recipient__type_id__in=stream_ids, date_sent__gt=cutoff_date).select_related('recipient', 'sender', 'sending_client') # Gather hot conversations. context["hot_conversations"] = gather_hot_conversations( user_profile, messages) # Gather new streams. new_streams_count, new_streams = gather_new_streams( user_profile, cutoff_date) context["new_streams"] = new_streams context["new_streams_count"] = new_streams_count # TODO: Set has_preheader if we want to include a preheader. if render_to_web: return context # We don't want to send emails containing almost no information. if enough_traffic(context["hot_conversations"], new_streams_count): logger.info("Sending digest email for user %s", user_profile.id) # Send now, as a ScheduledEmail send_future_email('zerver/emails/digest', user_profile.realm, to_user_ids=[user_profile.id], from_name="Zulip Digest", from_address=FromAddress.no_reply_placeholder, context=context) return None def exclude_subscription_modified_streams(user_profile: UserProfile, stream_ids: List[int], cutoff_date: datetime.datetime) -> List[int]: """Exclude streams from given list where users' subscription was modified.""" events = [ RealmAuditLog.SUBSCRIPTION_CREATED, RealmAuditLog.SUBSCRIPTION_ACTIVATED, RealmAuditLog.SUBSCRIPTION_DEACTIVATED, ] # Streams where the user's subscription was changed modified_streams = RealmAuditLog.objects.filter( realm=user_profile.realm, modified_user=user_profile, event_time__gt=cutoff_date, event_type__in=events).values_list('modified_stream_id', flat=True) return list(set(stream_ids) - set(modified_streams))