""" This module sets up a scheme for validating that arbitrary Python objects are correctly typed. It is totally decoupled from Django, composable, easily wrapped, and easily extended. A validator takes two parameters--var_name and val--and raises an error if val is not the correct type. The var_name parameter is used to format error messages. Validators return the validated value when there are no errors. Example primitive validators are check_string, check_int, and check_bool. Compound validators are created by check_list and check_dict. Note that those functions aren't directly called for validation; instead, those functions are called to return other functions that adhere to the validator contract. This is similar to how Python decorators are often parameterized. The contract for check_list and check_dict is that they get passed in other validators to apply to their items. This allows you to build up validators for arbitrarily complex validators. See ValidatorTestCase for example usage. A simple example of composition is this: check_list(check_string)('my_list', ['a', 'b', 'c']) To extend this concept, it's simply a matter of writing your own validator for any particular type of object. """ import re from datetime import datetime from typing import ( Any, Callable, Collection, Dict, List, Optional, Set, Tuple, TypeVar, Union, cast, overload, ) import orjson from django.core.exceptions import ValidationError from django.core.validators import URLValidator, validate_email from django.utils.translation import gettext as _ from zerver.lib.request import JsonableError, ResultT from zerver.lib.types import ProfileFieldData, Validator def check_string(var_name: str, val: object) -> str: if not isinstance(val, str): raise ValidationError(_("{var_name} is not a string").format(var_name=var_name)) return val def check_required_string(var_name: str, val: object) -> str: s = check_string(var_name, val) if not s.strip(): raise ValidationError(_("{item} cannot be blank.").format(item=var_name)) return s def check_string_in(possible_values: Union[Set[str], List[str]]) -> Validator[str]: def validator(var_name: str, val: object) -> str: s = check_string(var_name, val) if s not in possible_values: raise ValidationError(_("Invalid {var_name}").format(var_name=var_name)) return s return validator def check_short_string(var_name: str, val: object) -> str: return check_capped_string(50)(var_name, val) def check_capped_string(max_length: int) -> Validator[str]: def validator(var_name: str, val: object) -> str: s = check_string(var_name, val) if len(s) > max_length: raise ValidationError( _("{var_name} is too long (limit: {max_length} characters)").format( var_name=var_name, max_length=max_length, ) ) return s return validator def check_string_fixed_length(length: int) -> Validator[str]: def validator(var_name: str, val: object) -> str: s = check_string(var_name, val) if len(s) != length: raise ValidationError( _("{var_name} has incorrect length {length}; should be {target_length}").format( var_name=var_name, target_length=length, length=len(s), ) ) return s return validator def check_long_string(var_name: str, val: object) -> str: return check_capped_string(500)(var_name, val) def check_date(var_name: str, val: object) -> str: if not isinstance(val, str): raise ValidationError(_("{var_name} is not a string").format(var_name=var_name)) try: if datetime.strptime(val, "%Y-%m-%d").strftime("%Y-%m-%d") != val: raise ValidationError(_("{var_name} is not a date").format(var_name=var_name)) except ValueError: raise ValidationError(_("{var_name} is not a date").format(var_name=var_name)) return val def check_int(var_name: str, val: object) -> int: if not isinstance(val, int): raise ValidationError(_("{var_name} is not an integer").format(var_name=var_name)) return val def check_int_in(possible_values: List[int]) -> Validator[int]: def validator(var_name: str, val: object) -> int: n = check_int(var_name, val) if n not in possible_values: raise ValidationError(_("Invalid {var_name}").format(var_name=var_name)) return n return validator def check_float(var_name: str, val: object) -> float: if not isinstance(val, float): raise ValidationError(_("{var_name} is not a float").format(var_name=var_name)) return val def check_bool(var_name: str, val: object) -> bool: if not isinstance(val, bool): raise ValidationError(_("{var_name} is not a boolean").format(var_name=var_name)) return val def check_color(var_name: str, val: object) -> str: s = check_string(var_name, val) valid_color_pattern = re.compile(r"^#([a-fA-F0-9]{3,6})$") matched_results = valid_color_pattern.match(s) if not matched_results: raise ValidationError( _("{var_name} is not a valid hex color code").format(var_name=var_name) ) return s def check_none_or(sub_validator: Validator[ResultT]) -> Validator[Optional[ResultT]]: def f(var_name: str, val: object) -> Optional[ResultT]: if val is None: return val else: return sub_validator(var_name, val) return f def check_list( sub_validator: Validator[ResultT], length: Optional[int] = None ) -> Validator[List[ResultT]]: def f(var_name: str, val: object) -> List[ResultT]: if not isinstance(val, list): raise ValidationError(_("{var_name} is not a list").format(var_name=var_name)) if length is not None and length != len(val): raise ValidationError( _("{container} should have exactly {length} items").format( container=var_name, length=length, ) ) for i, item in enumerate(val): vname = f"{var_name}[{i}]" valid_item = sub_validator(vname, item) assert item is valid_item # To justify the unchecked cast below return cast(List[ResultT], val) return f def check_tuple(sub_validators: List[Validator[ResultT]]) -> Validator[Tuple[Any, ...]]: def f(var_name: str, val: object) -> Tuple[Any, ...]: if not isinstance(val, tuple): raise ValidationError(_("{var_name} is not a tuple").format(var_name=var_name)) desired_len = len(sub_validators) if desired_len != len(val): raise ValidationError( _("{var_name} should have exactly {desired_len} items").format( var_name=var_name, desired_len=desired_len, ) ) for i, sub_validator in enumerate(sub_validators): vname = f"{var_name}[{i}]" sub_validator(vname, val[i]) return val return f # https://zulip.readthedocs.io/en/latest/testing/mypy.html#using-overload-to-accurately-describe-variations @overload def check_dict( required_keys: Collection[Tuple[str, Validator[object]]] = [], optional_keys: Collection[Tuple[str, Validator[object]]] = [], *, _allow_only_listed_keys: bool = False, ) -> Validator[Dict[str, object]]: ... @overload def check_dict( required_keys: Collection[Tuple[str, Validator[ResultT]]] = [], optional_keys: Collection[Tuple[str, Validator[ResultT]]] = [], *, value_validator: Validator[ResultT], _allow_only_listed_keys: bool = False, ) -> Validator[Dict[str, ResultT]]: ... def check_dict( required_keys: Collection[Tuple[str, Validator[ResultT]]] = [], optional_keys: Collection[Tuple[str, Validator[ResultT]]] = [], *, value_validator: Optional[Validator[ResultT]] = None, _allow_only_listed_keys: bool = False, ) -> Validator[Dict[str, ResultT]]: def f(var_name: str, val: object) -> Dict[str, ResultT]: if not isinstance(val, dict): raise ValidationError(_("{var_name} is not a dict").format(var_name=var_name)) for k in val: check_string(f"{var_name} key", k) for k, sub_validator in required_keys: if k not in val: raise ValidationError( _("{key_name} key is missing from {var_name}").format( key_name=k, var_name=var_name, ) ) vname = f'{var_name}["{k}"]' sub_validator(vname, val[k]) for k, sub_validator in optional_keys: if k in val: vname = f'{var_name}["{k}"]' sub_validator(vname, val[k]) if value_validator: for key in val: vname = f"{var_name} contains a value that" valid_value = value_validator(vname, val[key]) assert val[key] is valid_value # To justify the unchecked cast below if _allow_only_listed_keys: required_keys_set = {x[0] for x in required_keys} optional_keys_set = {x[0] for x in optional_keys} delta_keys = set(val.keys()) - required_keys_set - optional_keys_set if len(delta_keys) != 0: raise ValidationError( _("Unexpected arguments: {}").format(", ".join(list(delta_keys))) ) return cast(Dict[str, ResultT], val) return f def check_dict_only( required_keys: Collection[Tuple[str, Validator[ResultT]]], optional_keys: Collection[Tuple[str, Validator[ResultT]]] = [], ) -> Validator[Dict[str, ResultT]]: return cast( Validator[Dict[str, ResultT]], check_dict(required_keys, optional_keys, _allow_only_listed_keys=True), ) def check_union(allowed_type_funcs: Collection[Validator[ResultT]]) -> Validator[ResultT]: """ Use this validator if an argument is of a variable type (e.g. processing properties that might be strings or booleans). `allowed_type_funcs`: the check_* validator functions for the possible data types for this variable. """ def enumerated_type_check(var_name: str, val: object) -> ResultT: for func in allowed_type_funcs: try: return func(var_name, val) except ValidationError: pass raise ValidationError(_("{var_name} is not an allowed_type").format(var_name=var_name)) return enumerated_type_check def equals(expected_val: ResultT) -> Validator[ResultT]: def f(var_name: str, val: object) -> ResultT: if val != expected_val: raise ValidationError( _("{variable} != {expected_value} ({value} is wrong)").format( variable=var_name, expected_value=expected_val, value=val, ) ) return cast(ResultT, val) return f def validate_login_email(email: str) -> None: try: validate_email(email) except ValidationError as err: raise JsonableError(str(err.message)) def check_url(var_name: str, val: object) -> str: # First, ensure val is a string s = check_string(var_name, val) # Now, validate as URL validate = URLValidator() try: validate(s) return s except ValidationError: raise ValidationError(_("{var_name} is not a URL").format(var_name=var_name)) def check_external_account_url_pattern(var_name: str, val: object) -> str: s = check_string(var_name, val) if s.count("%(username)s") != 1: raise ValidationError(_("Malformed URL pattern.")) url_val = s.replace("%(username)s", "username") check_url(var_name, url_val) return s def validate_select_field_data(field_data: ProfileFieldData) -> Dict[str, Dict[str, str]]: """ This function is used to validate the data sent to the server while creating/editing choices of the choice field in Organization settings. """ validator = check_dict_only( [ ("text", check_required_string), ("order", check_required_string), ] ) for key, value in field_data.items(): if not key.strip(): raise ValidationError(_("'{item}' cannot be blank.").format(item="value")) valid_value = validator("field_data", value) assert value is valid_value # To justify the unchecked cast below return cast(Dict[str, Dict[str, str]], field_data) def validate_select_field(var_name: str, field_data: str, value: object) -> str: """ This function is used to validate the value selected by the user against a choice field. This is not used to validate admin data. """ s = check_string(var_name, value) field_data_dict = orjson.loads(field_data) if s not in field_data_dict: msg = _("'{value}' is not a valid choice for '{field_name}'.") raise ValidationError(msg.format(value=value, field_name=var_name)) return s def check_widget_content(widget_content: object) -> Dict[str, Any]: if not isinstance(widget_content, dict): raise ValidationError("widget_content is not a dict") if "widget_type" not in widget_content: raise ValidationError("widget_type is not in widget_content") if "extra_data" not in widget_content: raise ValidationError("extra_data is not in widget_content") widget_type = widget_content["widget_type"] extra_data = widget_content["extra_data"] if not isinstance(extra_data, dict): raise ValidationError("extra_data is not a dict") if widget_type == "zform": if "type" not in extra_data: raise ValidationError("zform is missing type field") if extra_data["type"] == "choices": check_choices = check_list( check_dict( [ ("short_name", check_string), ("long_name", check_string), ("reply", check_string), ] ), ) # We re-check "type" here just to avoid it looking # like we have extraneous keys. checker = check_dict( [ ("type", equals("choices")), ("heading", check_string), ("choices", check_choices), ] ) checker("extra_data", extra_data) return widget_content raise ValidationError("unknown zform type: " + extra_data["type"]) raise ValidationError("unknown widget type: " + widget_type) def validate_poll_data(poll_data: object, is_widget_author: bool) -> None: check_dict([("type", check_string)])("poll data", poll_data) assert isinstance(poll_data, dict) if poll_data["type"] == "vote": checker = check_dict_only( [ ("type", check_string), ("key", check_string), ("vote", check_int_in([1, -1])), ] ) checker("poll data", poll_data) return if poll_data["type"] == "question": if not is_widget_author: raise ValidationError("You can't edit a question unless you are the author.") checker = check_dict_only( [ ("type", check_string), ("question", check_string), ] ) checker("poll data", poll_data) return if poll_data["type"] == "new_option": checker = check_dict_only( [ ("type", check_string), ("option", check_string), ("idx", check_int), ] ) checker("poll data", poll_data) return raise ValidationError(f"Unknown type for poll data: {poll_data['type']}") # Converter functions for use with has_request_variables def to_non_negative_int(s: str, max_int_size: int = 2 ** 32 - 1) -> int: x = int(s) if x < 0: raise ValueError("argument is negative") if x > max_int_size: raise ValueError(f"{x} is too large (max {max_int_size})") return x def to_positive_or_allowed_int(allowed_integer: Optional[int] = None) -> Callable[[str], int]: def converter(s: str) -> int: x = int(s) if allowed_integer is not None and x == allowed_integer: return x if x == 0: raise ValueError("argument is 0") return to_non_negative_int(s) return converter def check_string_or_int_list(var_name: str, val: object) -> Union[str, List[int]]: if isinstance(val, str): return val if not isinstance(val, list): raise ValidationError( _("{var_name} is not a string or an integer list").format(var_name=var_name) ) return check_list(check_int)(var_name, val) def check_string_or_int(var_name: str, val: object) -> Union[str, int]: if isinstance(val, (str, int)): return val raise ValidationError(_("{var_name} is not a string or integer").format(var_name=var_name)) TypeA = TypeVar("TypeA") TypeB = TypeVar("TypeB") def check_or( sub_validator1: Validator[TypeA], sub_validator2: Validator[TypeB] ) -> Validator[Union[TypeA, TypeB]]: def f(var_name: str, val: object) -> Union[TypeA, TypeB]: try: return sub_validator1(var_name, val) except ValidationError: pass return sub_validator2(var_name, val) return f