# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from typing import Any, Callable, Optional, Sequence, TypeVar, Iterable, Tuple from six import text_type, binary_type import base64 import errno import hashlib import heapq import itertools import os from time import sleep from django.conf import settings from django.http import HttpRequest from six.moves import range from zerver.lib.str_utils import force_text T = TypeVar('T') def statsd_key(val, clean_periods=False): # type: (Any, bool) -> str if not isinstance(val, str): val = str(val) if ':' in val: val = val.split(':')[0] val = val.replace('-', "_") if clean_periods: val = val.replace('.', '_') return val class StatsDWrapper(object): """Transparently either submit metrics to statsd or do nothing without erroring out""" # Backported support for gauge deltas # as our statsd server supports them but supporting # pystatsd is not released yet def _our_gauge(self, stat, value, rate=1, delta=False): # type: (str, float, float, bool) -> str """Set a gauge value.""" from django_statsd.clients import statsd if delta: value_str = '%+g|g' % (value,) else: value_str = '%g|g' % (value,) statsd._send(stat, value_str, rate) def __getattr__(self, name): # type: (str) -> Any # Hand off to statsd if we have it enabled # otherwise do nothing if name in ['timer', 'timing', 'incr', 'decr', 'gauge']: if settings.STATSD_HOST != '': from django_statsd.clients import statsd if name == 'gauge': return self._our_gauge else: return getattr(statsd, name) else: return lambda *args, **kwargs: None raise AttributeError statsd = StatsDWrapper() # Runs the callback with slices of all_list of a given batch_size def run_in_batches(all_list, batch_size, callback, sleep_time = 0, logger = None): # type: (Sequence[T], int, Callable[[Sequence[T]], None], int, Optional[Callable[[str], None]]) -> None if len(all_list) == 0: return limit = (len(all_list) // batch_size) + 1; for i in range(limit): start = i*batch_size end = (i+1) * batch_size if end >= len(all_list): end = len(all_list) batch = all_list[start:end] if logger: logger("Executing %s in batch %s of %s" % (end-start, i+1, limit)) callback(batch) if i != limit - 1: sleep(sleep_time) def make_safe_digest(string, hash_func=hashlib.sha1): # type: (text_type, Callable[[binary_type], Any]) -> text_type """ return a hex digest of `string`. """ # hashlib.sha1, md5, etc. expect bytes, so non-ASCII strings must # be encoded. return force_text(hash_func(string.encode('utf-8')).hexdigest()) def log_statsd_event(name): # type: (str) -> None """ Sends a single event to statsd with the desired name and the current timestamp This can be used to provide vertical lines in generated graphs, for example when doing a prod deploy, bankruptcy request, or other one-off events Note that to draw this event as a vertical line in graphite you can use the drawAsInfinite() command """ event_name = "events.%s" % (name,) statsd.incr(event_name) def generate_random_token(length): # type: (int) -> text_type return base64.b16encode(os.urandom(length // 2)).decode('utf-8').lower() def mkdir_p(path): # type: (str) -> None # Python doesn't have an analog to `mkdir -p` < Python 3.2. try: os.makedirs(path) except OSError as e: if e.errno == errno.EEXIST and os.path.isdir(path): pass else: raise def query_chunker(queries, id_collector=None, chunk_size=1000, db_chunk_size=None): # type: (List[Any], Set[int], int, int) -> Iterable[Any] ''' This merges one or more Django ascending-id queries into a generator that returns chunks of chunk_size row objects during each yield, preserving id order across all results.. Queries should satisfy these conditions: - They should be Django filters. - They should return Django objects with "id" attributes. - They should be disjoint. The generator also populates id_collector, which we use internally to enforce unique ids, but which the caller can pass in to us if they want the side effect of collecting all ids. ''' if db_chunk_size is None: db_chunk_size = chunk_size // len(queries) assert db_chunk_size >= 2 assert chunk_size >= 2 if id_collector is not None: assert(len(id_collector) == 0) else: id_collector = set() def chunkify(q, i): # type: (Any, int) -> Iterable[Tuple[int, int, Any]] q = q.order_by('id') min_id = -1 while True: rows = list(q.filter(id__gt=min_id)[0:db_chunk_size]) if len(rows) == 0: break for row in rows: yield (row.id, i, row) min_id = rows[-1].id iterators = [chunkify(q, i) for i, q in enumerate(queries)] merged_query = heapq.merge(*iterators) while True: tup_chunk = list(itertools.islice(merged_query, 0, chunk_size)) if len(tup_chunk) == 0: break # Do duplicate-id management here. tup_ids = set([tup[0] for tup in tup_chunk]) assert len(tup_ids) == len(tup_chunk) assert len(tup_ids.intersection(id_collector)) == 0 id_collector.update(tup_ids) yield [row for row_id, i, row in tup_chunk] def get_subdomain(request): # type: (HttpRequest) -> text_type domain = request.get_host().lower() index = domain.find("." + settings.EXTERNAL_HOST) if index == -1: return "" subdomain = domain[0:index] if subdomain in settings.ROOT_SUBDOMAIN_ALIASES: return "" return subdomain def check_subdomain(realm_subdomain, user_subdomain): # type: (text_type, text_type) -> bool if settings.REALMS_HAVE_SUBDOMAINS and realm_subdomain is not None: if (realm_subdomain == "" and user_subdomain is None): return True if realm_subdomain != user_subdomain: return False return True