from __future__ import absolute_import from __future__ import print_function from collections import defaultdict from typing import Callable, DefaultDict, Iterator, List, Optional, Set, Tuple Edge = Tuple[str, str] EdgeSet = Set[Edge] class Graph(object): def __init__(self, tuples): # type: (EdgeSet) -> None self.children = defaultdict(list) # type: DefaultDict[str, List[str]] self.parents = defaultdict(list) # type: DefaultDict[str, List[str]] self.nodes = set() # type: Set[str] for parent, child in tuples: self.parents[child].append(parent) self.children[parent].append(child) self.nodes.add(parent) self.nodes.add(child) def copy(self): # type: () -> Graph return Graph(self.edges()) def num_edges(self): # type: () -> int return len(self.edges()) def minus_edge(self, edge): # type: (Edge) -> Graph edges = self.edges().copy() edges.remove(edge) return Graph(edges) def edges(self): # type: () -> EdgeSet s = set() for parent in self.nodes: for child in self.children[parent]: s.add((parent, child)) return s def remove_exterior_nodes(self): # type: () -> None still_work_to_do = True while still_work_to_do: still_work_to_do = False # for now for node in self.nodes: if self.is_exterior_node(node): self.remove(node) still_work_to_do = True break def is_exterior_node(self, node): # type: (str) -> bool parents = self.parents[node] children = self.children[node] if not parents: return True if not children: return True if len(parents) > 1 or len(children) > 1: return False # If our only parent and child are the same node, then we could # effectively be collapsed into the parent, so don't add clutter. return parents[0] == children[0] def remove(self, node): # type: (str) -> None for parent in self.parents[node]: self.children[parent].remove(node) for child in self.children[node]: self.parents[child].remove(node) self.nodes.remove(node) def report(self): # type: () -> None print('parents/children/module') tups = sorted([ (len(self.parents[node]), len(self.children[node]), node) for node in self.nodes]) for tup in tups: print(tup) def best_edge_to_remove(orig_graph, is_exempt): # type: (Graph, Callable[[Edge], bool]) -> Optional[Edge] # expects an already reduced graph as input orig_edges = orig_graph.edges() def get_choices(): # type: () -> Iterator[Tuple[int, Edge]] for edge in orig_edges: if is_exempt(edge): continue graph = orig_graph.minus_edge(edge) graph.remove_exterior_nodes() size = graph.num_edges() yield (size, edge) choices = list(get_choices()) if not choices: return None min_size, best_edge = min(choices) if min_size >= orig_graph.num_edges(): raise Exception('no edges work here') return best_edge def make_dot_file(graph): # type: (Graph) -> str buffer = 'digraph G {\n' for node in graph.nodes: buffer += node + ';\n' for child in graph.children[node]: buffer += '{} -> {};\n'.format(node, child) buffer += '}' return buffer def test(): # type: () -> None graph = Graph(set([ ('x', 'a'), ('a', 'b'), ('b', 'c'), ('c', 'a'), ('c', 'd'), ('d', 'e'), ('e', 'f'), ('e', 'g'), ])) graph.remove_exterior_nodes() s = make_dot_file(graph) open('zulip-deps.dot', 'w').write(s) if __name__ == '__main__': test()