import datetime import logging from collections import defaultdict from typing import Any, Dict, List, Set, Tuple from django.conf import settings from django.db import transaction from django.utils.timezone import now as timezone_now from confirmation.models import one_click_unsubscribe_link from zerver.context_processors import common_context from zerver.lib.email_notifications import build_message_list from zerver.lib.logging_util import log_to_file from zerver.lib.message import get_last_message_id from zerver.lib.queue import queue_json_publish from zerver.lib.send_email import FromAddress, send_future_email from zerver.lib.url_encoding import encode_stream from zerver.models import ( Message, Realm, RealmAuditLog, Recipient, Subscription, UserActivityInterval, UserProfile, get_active_streams, ) logger = logging.getLogger(__name__) log_to_file(logger, settings.DIGEST_LOG_PATH) DIGEST_CUTOFF = 5 TopicKey = Tuple[int, str] class DigestTopic: def __init__(self, topic_key: TopicKey) -> None: self.topic_key = topic_key self.human_senders: Set[str] = set() self.sample_messages: List[Message] = [] self.num_human_messages = 0 def stream_id(self) -> int: # topic_key is (stream_id, topic_name) return self.topic_key[0] def add_message(self, message: Message) -> None: if len(self.sample_messages) < 2: self.sample_messages.append(message) if message.sent_by_human(): self.human_senders.add(message.sender.full_name) self.num_human_messages += 1 def length(self) -> int: return self.num_human_messages def diversity(self) -> int: return len(self.human_senders) def teaser_data(self, user_profile: UserProfile) -> Dict[str, Any]: teaser_count = self.num_human_messages - len(self.sample_messages) first_few_messages = build_message_list( user_profile, self.sample_messages, ) return { "participants": self.human_senders, "count": teaser_count, "first_few_messages": first_few_messages, } # Digests accumulate 2 types of interesting traffic for a user: # 1. New streams # 2. Interesting stream traffic, as determined by the longest and most # diversely comment upon topics. def should_process_digest(realm_str: str) -> bool: if realm_str in settings.SYSTEM_ONLY_REALMS: # Don't try to send emails to system-only realms return False return True # Changes to this should also be reflected in # zerver/worker/queue_processors.py:DigestWorker.consume() def queue_digest_recipient(user_id: int, cutoff: datetime.datetime) -> None: # Convert cutoff to epoch seconds for transit. event = { "user_profile_id": user_id, "cutoff": cutoff.strftime('%s') } queue_json_publish("digest_emails", event) def enqueue_emails(cutoff: datetime.datetime) -> None: if not settings.SEND_DIGEST_EMAILS: return weekday = timezone_now().weekday() for realm in Realm.objects.filter(deactivated=False, digest_emails_enabled=True, digest_weekday=weekday): if should_process_digest(realm.string_id): _enqueue_emails_for_realm(realm, cutoff) def _enqueue_emails_for_realm(realm: Realm, cutoff: datetime.datetime) -> None: # This should only be called directly by tests. Use enqueue_emails # to process all realms that are set up for processing on any given day. realm_user_ids = set(UserProfile.objects.filter( realm=realm, is_active=True, is_bot=False, enable_digest_emails=True, ).values_list('id', flat=True)) twelve_hours_ago = timezone_now() - datetime.timedelta(hours=12) recent_user_ids = set(RealmAuditLog.objects.filter( realm_id=realm.id, event_type=RealmAuditLog.USER_DIGEST_EMAIL_CREATED, event_time__gt=twelve_hours_ago, ).values_list('modified_user_id', flat=True).distinct()) realm_user_ids -= recent_user_ids active_user_ids = set(UserActivityInterval.objects.filter( user_profile_id__in=realm_user_ids, end__gt=cutoff, ).values_list('user_profile_id', flat=True).distinct()) user_ids = realm_user_ids - active_user_ids for user_id in user_ids: queue_digest_recipient(user_id, cutoff) logger.info( "User %s is inactive, queuing for potential digest", user_id, ) def get_recent_topics( stream_ids: List[int], cutoff_date: datetime.datetime, ) -> List[DigestTopic]: # Gather information about topic conversations, then # classify by: # * topic length # * number of senders messages = Message.objects.filter( recipient__type=Recipient.STREAM, recipient__type_id__in=stream_ids, date_sent__gt=cutoff_date, ).order_by( 'id', # we will sample the first few messages ).select_related( 'recipient', # we need stream_id 'sender', # we need the sender's full name 'sending_client' # for Message.sent_by_human ) digest_topic_map: Dict[TopicKey, DigestTopic] = {} for message in messages: topic_key = (message.recipient.type_id, message.topic_name()) if topic_key not in digest_topic_map: digest_topic_map[topic_key] = DigestTopic(topic_key) digest_topic_map[topic_key].add_message(message) topics = list(digest_topic_map.values()) return topics def get_hot_topics( all_topics: List[DigestTopic], stream_ids: Set[int], ) -> List[DigestTopic]: topics = [ topic for topic in all_topics if topic.stream_id() in stream_ids ] topics_by_diversity = sorted(topics, key=lambda dt: dt.diversity()) topics_by_length = sorted(topics, key=lambda dt: dt.length()) # Start with the two most diverse topics. hot_topics = topics_by_diversity[:2] # Pad out our list up to 4 items, using the topics' length (aka message # count) as the secondary filter. for topic in topics_by_length: if topic not in hot_topics: hot_topics.append(topic) if len(hot_topics) >= 4: break return hot_topics def gather_new_streams(user_profile: UserProfile, threshold: datetime.datetime) -> Tuple[int, Dict[str, List[str]]]: if user_profile.is_guest: new_streams = list(get_active_streams(user_profile.realm).filter( is_web_public=True, date_created__gt=threshold)) elif user_profile.can_access_public_streams(): new_streams = list(get_active_streams(user_profile.realm).filter( invite_only=False, date_created__gt=threshold)) base_url = f"{user_profile.realm.uri}/#narrow/stream/" streams_html = [] streams_plain = [] for stream in new_streams: narrow_url = base_url + encode_stream(stream.id, stream.name) stream_link = f"{stream.name}" streams_html.append(stream_link) streams_plain.append(stream.name) return len(new_streams), {"html": streams_html, "plain": streams_plain} def enough_traffic(hot_conversations: str, new_streams: int) -> bool: return bool(hot_conversations or new_streams) def bulk_get_digest_context(users: List[UserProfile], cutoff: float) -> Dict[int, Dict[str, Any]]: # Convert from epoch seconds to a datetime object. cutoff_date = datetime.datetime.fromtimestamp(int(cutoff), tz=datetime.timezone.utc) result: Dict[int, Dict[str, Any]] = {} user_ids = [user.id for user in users] def get_stream_map(user_ids: List[int]) -> Dict[int, Set[int]]: rows = Subscription.objects.filter( user_profile_id__in=user_ids, recipient__type=Recipient.STREAM, active=True, is_muted=False, ).values('user_profile_id', 'recipient__type_id') # maps user_id -> {stream_id, stream_id, ...} dct: Dict[int, Set[int]] = defaultdict(set) for row in rows: dct[row['user_profile_id']].add(row['recipient__type_id']) return dct stream_map = get_stream_map(user_ids) all_stream_ids = set() for user in users: stream_ids = stream_map[user.id] if user.long_term_idle: stream_ids -= streams_recently_modified_for_user(user, cutoff_date) all_stream_ids |= stream_ids # Get all the recent topics for all the users. This does the heavy # lifting of making an expensive query to the Message table. Then # for each user, we filter to just the streams they care about. recent_topics = get_recent_topics(sorted(list(all_stream_ids)), cutoff_date) for user in users: stream_ids = stream_map[user.id] hot_topics = get_hot_topics(recent_topics, stream_ids) context = common_context(user) # Start building email template data. unsubscribe_link = one_click_unsubscribe_link(user, "digest") context.update(unsubscribe_link=unsubscribe_link) # Get context data for hot conversations. context["hot_conversations"] = [ hot_topic.teaser_data(user) for hot_topic in hot_topics ] # Gather new streams. new_streams_count, new_streams = gather_new_streams(user, cutoff_date) context["new_streams"] = new_streams context["new_streams_count"] = new_streams_count result[user.id] = context return result def get_digest_context(user: UserProfile, cutoff: float) -> Dict[str, Any]: return bulk_get_digest_context([user], cutoff)[user.id] @transaction.atomic def bulk_handle_digest_email(user_ids: List[int], cutoff: float) -> None: # We go directly to the database to get user objects, # since inactive users are likely to not be in the cache. users = UserProfile.objects.filter(id__in=user_ids).order_by('id') context_map = bulk_get_digest_context(users, cutoff) digest_users = [] for user in users: context = context_map[user.id] # We don't want to send emails containing almost no information. if enough_traffic(context["hot_conversations"], context["new_streams_count"]): digest_users.append(user) logger.info("Sending digest email for user %s", user.id) # Send now, as a ScheduledEmail send_future_email( 'zerver/emails/digest', user.realm, to_user_ids=[user.id], from_name="Zulip Digest", from_address=FromAddress.no_reply_placeholder, context=context, ) bulk_write_realm_audit_logs(digest_users) def bulk_write_realm_audit_logs(users: List[UserProfile]) -> None: if not users: return # We write RealmAuditLog rows for auditing, and we will also # use these rows during the next run to possibly exclude the # users (if insufficient time has passed). last_message_id = get_last_message_id() now = timezone_now() log_rows = [ RealmAuditLog( realm_id=user.realm_id, modified_user_id=user.id, event_last_message_id=last_message_id, event_time=now, event_type=RealmAuditLog.USER_DIGEST_EMAIL_CREATED, ) for user in users ] RealmAuditLog.objects.bulk_create(log_rows) def handle_digest_email(user_id: int, cutoff: float) -> None: bulk_handle_digest_email([user_id], cutoff) def streams_recently_modified_for_user(user: UserProfile, cutoff_date: datetime.datetime) -> Set[int]: events = [ RealmAuditLog.SUBSCRIPTION_CREATED, RealmAuditLog.SUBSCRIPTION_ACTIVATED, RealmAuditLog.SUBSCRIPTION_DEACTIVATED, ] # Streams where the user's subscription was changed modified_streams = RealmAuditLog.objects.filter( realm=user.realm, modified_user=user, event_time__gt=cutoff_date, event_type__in=events).values_list('modified_stream_id', flat=True) return set(modified_streams)