''' This module sets up a scheme for validating that arbitrary Python objects are correctly typed. It is totally decoupled from Django, composable, easily wrapped, and easily extended. A validator takes two parameters--var_name and val--and returns an error if val is not the correct type. The var_name parameter is used to format error messages. Validators return None when there are no errors. Example primitive validators are check_string, check_int, and check_bool. Compound validators are created by check_list and check_dict. Note that those functions aren't directly called for validation; instead, those functions are called to return other functions that adhere to the validator contract. This is similar to how Python decorators are often parameterized. The contract for check_list and check_dict is that they get passed in other validators to apply to their items. This allows you to build up validators for arbitrarily complex validators. See ValidatorTestCase for example usage. A simple example of composition is this: check_list(check_string)('my_list', ['a', 'b', 'c']) == None To extend this concept, it's simply a matter of writing your own validator for any particular type of object. ''' from __future__ import absolute_import import six def check_string(var_name, val): if not isinstance(val, six.string_types): return '%s is not a string' % (var_name,) return None def check_int(var_name, val): if not isinstance(val, int): return '%s is not an integer' % (var_name,) return None def check_bool(var_name, val): if not isinstance(val, bool): return '%s is not a boolean' % (var_name,) return None def check_none_or(sub_validator): def f(var_name, val): if val is None: return None else: return sub_validator(var_name, val) return f def check_list(sub_validator, length=None): def f(var_name, val): if not isinstance(val, list): return '%s is not a list' % (var_name,) if length is not None and length != len(val): return '%s should have exactly %d items' % (var_name, length) if sub_validator: for i, item in enumerate(val): vname = '%s[%d]' % (var_name, i) error = sub_validator(vname, item) if error: return error return None return f def check_dict(required_keys): # required_keys is a list of tuples of # key_name/validator def f(var_name, val): if not isinstance(val, dict): return '%s is not a dict' % (var_name,) for k, sub_validator in required_keys: if k not in val: return '%s key is missing from %s' % (k, var_name) vname = '%s["%s"]' % (var_name, k) error = sub_validator(vname, val[k]) if error: return error return None return f def check_variable_type(allowed_type_funcs): """ Use this validator if an argument is of a variable type (e.g. processing properties that might be strings or booleans). `allowed_type_funcs`: the check_* validator functions for the possible data types for this variable. """ def enumerated_type_check(var_name, val): for func in allowed_type_funcs: if not func(var_name, val): return None return '%s is not an allowed_type' % (var_name,) return enumerated_type_check def equals(expected_val): def f(var_name, val): if val != expected_val: return '%s != %r (%r is wrong)' % (var_name, expected_val, val) return None return f