import datetime import logging from collections import defaultdict from typing import Any, Dict, List, Set, Tuple from django.conf import settings from django.db import transaction from django.utils.timezone import now as timezone_now from confirmation.models import one_click_unsubscribe_link from zerver.context_processors import common_context from zerver.lib.email_notifications import build_message_list from zerver.lib.logging_util import log_to_file from zerver.lib.message import get_last_message_id from zerver.lib.queue import queue_json_publish from zerver.lib.send_email import FromAddress, send_future_email from zerver.lib.url_encoding import encode_stream from zerver.models import ( Message, Realm, RealmAuditLog, Recipient, Stream, Subscription, UserActivityInterval, UserProfile, get_active_streams, ) logger = logging.getLogger(__name__) log_to_file(logger, settings.DIGEST_LOG_PATH) DIGEST_CUTOFF = 5 TopicKey = Tuple[int, str] class DigestTopic: def __init__(self, topic_key: TopicKey) -> None: self.topic_key = topic_key self.human_senders: Set[str] = set() self.sample_messages: List[Message] = [] self.num_human_messages = 0 def stream_id(self) -> int: # topic_key is (stream_id, topic_name) return self.topic_key[0] def add_message(self, message: Message) -> None: if len(self.sample_messages) < 2: self.sample_messages.append(message) if message.sent_by_human(): self.human_senders.add(message.sender.full_name) self.num_human_messages += 1 def length(self) -> int: return self.num_human_messages def diversity(self) -> int: return len(self.human_senders) def teaser_data(self, user: UserProfile, stream_map: Dict[int, Stream]) -> Dict[str, Any]: teaser_count = self.num_human_messages - len(self.sample_messages) first_few_messages = build_message_list( user=user, messages=self.sample_messages, stream_map=stream_map, ) return { "participants": sorted(self.human_senders), "count": teaser_count, "first_few_messages": first_few_messages, } # Digests accumulate 2 types of interesting traffic for a user: # 1. New streams # 2. Interesting stream traffic, as determined by the longest and most # diversely comment upon topics. def should_process_digest(realm_str: str) -> bool: if realm_str in settings.SYSTEM_ONLY_REALMS: # Don't try to send emails to system-only realms return False return True # Changes to this should also be reflected in # zerver/worker/queue_processors.py:DigestWorker.consume() def queue_digest_user_ids(user_ids: List[int], cutoff: datetime.datetime) -> None: # Convert cutoff to epoch seconds for transit. event = { "user_profile_id": user_ids, "cutoff": cutoff.strftime('%s') } queue_json_publish("digest_emails", event) def enqueue_emails(cutoff: datetime.datetime) -> None: if not settings.SEND_DIGEST_EMAILS: return weekday = timezone_now().weekday() for realm in Realm.objects.filter(deactivated=False, digest_emails_enabled=True, digest_weekday=weekday): if should_process_digest(realm.string_id): _enqueue_emails_for_realm(realm, cutoff) def _enqueue_emails_for_realm(realm: Realm, cutoff: datetime.datetime) -> None: # This should only be called directly by tests. Use enqueue_emails # to process all realms that are set up for processing on any given day. realm_user_ids = set(UserProfile.objects.filter( realm=realm, is_active=True, is_bot=False, enable_digest_emails=True, ).values_list('id', flat=True)) twelve_hours_ago = timezone_now() - datetime.timedelta(hours=12) recent_user_ids = set(RealmAuditLog.objects.filter( realm_id=realm.id, event_type=RealmAuditLog.USER_DIGEST_EMAIL_CREATED, event_time__gt=twelve_hours_ago, ).values_list('modified_user_id', flat=True).distinct()) realm_user_ids -= recent_user_ids active_user_ids = set(UserActivityInterval.objects.filter( user_profile_id__in=realm_user_ids, end__gt=cutoff, ).values_list('user_profile_id', flat=True).distinct()) user_ids = list(realm_user_ids - active_user_ids) user_ids.sort() # We process batches of 30. We want a big enough batch # to amorize work, but not so big that a single item # from the queue takes too long to process. chunk_size = 30 for i in range(0, len(user_ids), chunk_size): chunk_user_ids = user_ids[i:i + chunk_size] queue_digest_user_ids(chunk_user_ids, cutoff) logger.info( "Queuing user_ids for potential digest: %s", chunk_user_ids, ) def get_recent_topics( stream_ids: List[int], cutoff_date: datetime.datetime, ) -> List[DigestTopic]: # Gather information about topic conversations, then # classify by: # * topic length # * number of senders messages = Message.objects.filter( recipient__type=Recipient.STREAM, recipient__type_id__in=stream_ids, date_sent__gt=cutoff_date, ).order_by( 'id', # we will sample the first few messages ).select_related( 'recipient', # we need stream_id 'sender', # we need the sender's full name 'sending_client' # for Message.sent_by_human ) digest_topic_map: Dict[TopicKey, DigestTopic] = {} for message in messages: topic_key = (message.recipient.type_id, message.topic_name()) if topic_key not in digest_topic_map: digest_topic_map[topic_key] = DigestTopic(topic_key) digest_topic_map[topic_key].add_message(message) topics = list(digest_topic_map.values()) return topics def get_hot_topics( all_topics: List[DigestTopic], stream_ids: Set[int], ) -> List[DigestTopic]: topics = [ topic for topic in all_topics if topic.stream_id() in stream_ids ] topics_by_diversity = sorted(topics, key=lambda dt: dt.diversity()) topics_by_length = sorted(topics, key=lambda dt: dt.length()) # Start with the two most diverse topics. hot_topics = topics_by_diversity[:2] # Pad out our list up to 4 items, using the topics' length (aka message # count) as the secondary filter. for topic in topics_by_length: if topic not in hot_topics: hot_topics.append(topic) if len(hot_topics) >= 4: break return hot_topics def get_recent_streams(realm: Realm, threshold: datetime.datetime) -> List[Stream]: fields = ["id", "name", "is_web_public", "invite_only"] return list(get_active_streams(realm).filter(date_created__gt=threshold).only(*fields)) def gather_new_streams( realm: Realm, recent_streams: List[Stream], # streams only need id and name can_access_public: bool, ) -> Tuple[int, Dict[str, List[str]]]: if can_access_public: new_streams = [stream for stream in recent_streams if not stream.invite_only] else: new_streams = [stream for stream in recent_streams if stream.is_web_public] base_url = f"{realm.uri}/#narrow/stream/" streams_html = [] streams_plain = [] for stream in new_streams: narrow_url = base_url + encode_stream(stream.id, stream.name) stream_link = f"{stream.name}" streams_html.append(stream_link) streams_plain.append(stream.name) return len(new_streams), {"html": streams_html, "plain": streams_plain} def enough_traffic(hot_conversations: str, new_streams: int) -> bool: return bool(hot_conversations or new_streams) def get_user_stream_map(user_ids: List[int]) -> Dict[int, Set[int]]: rows = Subscription.objects.filter( user_profile_id__in=user_ids, recipient__type=Recipient.STREAM, active=True, is_muted=False, ).values('user_profile_id', 'recipient__type_id') # maps user_id -> {stream_id, stream_id, ...} dct: Dict[int, Set[int]] = defaultdict(set) for row in rows: dct[row['user_profile_id']].add(row['recipient__type_id']) return dct def get_slim_stream_map(stream_ids: Set[int]) -> Dict[int, Stream]: # This can be passed to build_message_list. streams = Stream.objects.filter( id__in=stream_ids, ).only('id', 'name') return {stream.id: stream for stream in streams} def bulk_get_digest_context(users: List[UserProfile], cutoff: float) -> Dict[int, Dict[str, Any]]: # We expect a non-empty list of users all from the same realm. assert(users) realm = users[0].realm for user in users: assert user.realm_id == realm.id # Convert from epoch seconds to a datetime object. cutoff_date = datetime.datetime.fromtimestamp(int(cutoff), tz=datetime.timezone.utc) result: Dict[int, Dict[str, Any]] = {} user_ids = [user.id for user in users] user_stream_map = get_user_stream_map(user_ids) recently_modified_streams = get_modified_streams(user_ids, cutoff_date) all_stream_ids = set() for user in users: stream_ids = user_stream_map[user.id] stream_ids -= recently_modified_streams.get(user.id, set()) all_stream_ids |= stream_ids # Get all the recent topics for all the users. This does the heavy # lifting of making an expensive query to the Message table. Then # for each user, we filter to just the streams they care about. recent_topics = get_recent_topics(sorted(list(all_stream_ids)), cutoff_date) stream_map = get_slim_stream_map(all_stream_ids) recent_streams = get_recent_streams(realm, cutoff_date) for user in users: stream_ids = user_stream_map[user.id] hot_topics = get_hot_topics(recent_topics, stream_ids) context = common_context(user) # Start building email template data. unsubscribe_link = one_click_unsubscribe_link(user, "digest") context.update(unsubscribe_link=unsubscribe_link) # Get context data for hot conversations. context["hot_conversations"] = [ hot_topic.teaser_data(user, stream_map) for hot_topic in hot_topics ] # Gather new streams. new_streams_count, new_streams = gather_new_streams( realm=realm, recent_streams=recent_streams, can_access_public=user.can_access_public_streams() ) context["new_streams"] = new_streams context["new_streams_count"] = new_streams_count result[user.id] = context return result def get_digest_context(user: UserProfile, cutoff: float) -> Dict[str, Any]: return bulk_get_digest_context([user], cutoff)[user.id] @transaction.atomic def bulk_handle_digest_email(user_ids: List[int], cutoff: float) -> None: # We go directly to the database to get user objects, # since inactive users are likely to not be in the cache. users = UserProfile.objects.filter(id__in=user_ids).order_by("id").select_related("realm") context_map = bulk_get_digest_context(users, cutoff) digest_users = [] for user in users: context = context_map[user.id] # We don't want to send emails containing almost no information. if enough_traffic(context["hot_conversations"], context["new_streams_count"]): digest_users.append(user) logger.info("Sending digest email for user %s", user.id) # Send now, as a ScheduledEmail send_future_email( 'zerver/emails/digest', user.realm, to_user_ids=[user.id], from_name="Zulip Digest", from_address=FromAddress.no_reply_placeholder, context=context, ) bulk_write_realm_audit_logs(digest_users) def bulk_write_realm_audit_logs(users: List[UserProfile]) -> None: if not users: return # We write RealmAuditLog rows for auditing, and we will also # use these rows during the next run to possibly exclude the # users (if insufficient time has passed). last_message_id = get_last_message_id() now = timezone_now() log_rows = [ RealmAuditLog( realm_id=user.realm_id, modified_user_id=user.id, event_last_message_id=last_message_id, event_time=now, event_type=RealmAuditLog.USER_DIGEST_EMAIL_CREATED, ) for user in users ] RealmAuditLog.objects.bulk_create(log_rows) def get_modified_streams(user_ids: List[int], cutoff_date: datetime.datetime) -> Dict[int, Set[int]]: """Skipping streams where the user's subscription status has changed when constructing digests is critical to ensure correctness for streams without shared history, guest users, and long-term idle users, because it means that every user has the same view of the history of a given stream whose message history is being included (and thus we can share a lot of work). The downside is that newly created streams are never included in the first digest email after their creation. Should we wish to change that, we will need to be very careful to avoid creating bugs for any of those classes of users. """ events = [ RealmAuditLog.SUBSCRIPTION_CREATED, RealmAuditLog.SUBSCRIPTION_ACTIVATED, RealmAuditLog.SUBSCRIPTION_DEACTIVATED, ] # Get rows where the users' subscriptions have changed. rows = RealmAuditLog.objects.filter( modified_user_id__in=user_ids, event_time__gt=cutoff_date, event_type__in=events, ).values("modified_user_id", "modified_stream_id").distinct() result: Dict[int, Set[int]] = defaultdict(set) for row in rows: user_id = row["modified_user_id"] stream_id = row["modified_stream_id"] result[user_id].add(stream_id) return result