After this change, the memcached time consumed by doing
get_old_messages for 200 and 1000 messages respectively now look like
this:
200 63ms (mem: 6ms/3) (db: 4ms/2q) /json/get_old_messages
200 178ms (mem: 67ms/2) (db: 6ms/1q) /json/get_old_messages
which might help explain where the time is going on prod for some of
our slower queries.
(imported from commit b8fe83b175914b6796922a65a1c5537f4e7a9429)
For sites that are supported, we now grab thumbnails for images + video
embed code for videos and use them in lieu of our existing embed code.
We also embed rich non-script content.
Special casing is done so that we don't embed images twice.
Some testcases were modified to avoid triggering Embed.ly
The manual step is to install python-embedly.
(imported from commit d725bab91675c61953116c5ca741055fce49724e)
This decouples from Chrome notifications, which gives us cross-platform
support in at least modern browsers.
We log this action so its replayable in our message logs.
This implements the model change indicated by the previous schema commit.
(imported from commit b21213cdde54f43670bbb0bf1f607147fc732b38)
In repeated trials, the initial data fetch used to take about 1100ms.
In practice, it was often taking >2000ms, probably due to caching
effects. This commit cuts the time down to about 300ms in repeated
trials.
Note that the semantics are changed slightly in that we may no longer
get exactly 25000 messages. However, holes in the message_id
sequence are currently very rare or non-existent so this shouldn't be
a problem and we don't care about the exact number of messages
anyway.
I believe the problem was that the query planner was unable to
effectively use the LIMIT clause to figure out that only a small
subset of zephyr_message was going to be needed. Thus, it planned
for operating on the entire table and decided it could not use a more
efficient plan because work_mem, although large, would not be large
enough to execute the query over all of zephyr_message.
The original query was:
SELECT "zephyr_message"."id", "zephyr_message"."sender_id", "zephyr_message"."recipient_id", "zephyr_message"."subject", "zephyr_message"."content", "zephyr_message"."rendered_content", "zephyr_message"."rendered_content_version", "zephyr_message"."pub_date", "zephyr_message"."sending_client_id", "zephyr_userprofile"."id", "zephyr_userprofile"."password", "zephyr_userprofile"."last_login", "zephyr_userprofile"."email", "zephyr_userprofile"."is_staff", "zephyr_userprofile"."is_active", "zephyr_userprofile"."date_joined", "zephyr_userprofile"."full_name", "zephyr_userprofile"."short_name", "zephyr_userprofile"."pointer", "zephyr_userprofile"."last_pointer_updater", "zephyr_userprofile"."realm_id", "zephyr_userprofile"."api_key", "zephyr_userprofile"."enable_desktop_notifications", "zephyr_userprofile"."enter_sends", "zephyr_userprofile"."tutorial_status", "zephyr_realm"."id", "zephyr_realm"."domain", "zephyr_realm"."restricted_to_domain", "zephyr_recipient"."id", "zephyr_recipient"."type_id", "zephyr_recipient"."type", "zephyr_client"."id", "zephyr_client"."name" FROM "zephyr_message" INNER JOIN "zephyr_userprofile" ON ( "zephyr_message"."sender_id" = "zephyr_userprofile"."id" ) INNER JOIN "zephyr_realm" ON ( "zephyr_userprofile"."realm_id" = "zephyr_realm"."id" ) INNER JOIN "zephyr_recipient" ON ( "zephyr_message"."recipient_id" = "zephyr_recipient"."id" ) INNER JOIN "zephyr_client" ON ( "zephyr_message"."sending_client_id" = "zephyr_client"."id" ) ORDER BY "zephyr_message"."id" DESC LIMIT 25000;
with query plan:
Limit (cost=0.00..27120.95 rows=25000 width=362) (actual time=0.051..1121.282 rows=25000 loops=1)
-> Nested Loop (cost=0.00..5330872.99 rows=4913981 width=362) (actual time=0.048..1081.014 rows=25000 loops=1)
-> Nested Loop (cost=0.00..3932643.31 rows=4913981 width=344) (actual time=0.042..926.398 rows=25000 loops=1)
-> Nested Loop (cost=0.00..2550275.29 rows=4913981 width=334) (actual time=0.035..752.524 rows=25000 loops=1)
Join Filter: (zephyr_message.sending_client_id = zephyr_client.id)
-> Nested Loop (cost=0.00..1739467.29 rows=4913981 width=320) (actual time=0.024..217.348 rows=25000 loops=1)
-> Index Scan Backward using zephyr_message_pkey on zephyr_message (cost=0.00..362510.09 rows=4913981 width=156) (actual time=0.014..42.097 rows=25000 loops=1)
-> Index Scan using zephyr_userprofile_pkey on zephyr_userprofile (cost=0.00..0.27 rows=1 width=164) (actual time=0.003..0.004 rows=1 loops=25000)
Index Cond: (id = zephyr_message.sender_id)
-> Materialize (cost=0.00..1.17 rows=11 width=14) (actual time=0.001..0.010 rows=11 loops=25000)
-> Seq Scan on zephyr_client (cost=0.00..1.11 rows=11 width=14) (actual time=0.002..0.010 rows=11 loops=1)
-> Index Scan using zephyr_recipient_pkey on zephyr_recipient (cost=0.00..0.27 rows=1 width=10) (actual time=0.002..0.003 rows=1 loops=25000)
Index Cond: (id = zephyr_message.recipient_id)
-> Index Scan using zephyr_realm_pkey on zephyr_realm (cost=0.00..0.27 rows=1 width=18) (actual time=0.002..0.003 rows=1 loops=25000)
Index Cond: (id = zephyr_userprofile.realm_id)
Total runtime: 1141.408 ms
In the new code, we do two queries:
SELECT "zephyr_message"."id" FROM "zephyr_message" ORDER BY "zephyr_message"."id" DESC LIMIT 1
followed by:
SELECT "zephyr_message"."id", "zephyr_message"."sender_id", "zephyr_message"."recipient_id", "zephyr_message"."subject", "zephyr_message"."content", "zephyr_message"."rendered_content", "zephyr_message"."rendered_content_version", "zephyr_message"."pub_date", "zephyr_message"."sending_client_id", "zephyr_userprofile"."id", "zephyr_userprofile"."password", "zephyr_userprofile"."last_login", "zephyr_userprofile"."email", "zephyr_userprofile"."is_staff", "zephyr_userprofile"."is_active", "zephyr_userprofile"."date_joined", "zephyr_userprofile"."full_name", "zephyr_userprofile"."short_name", "zephyr_userprofile"."pointer", "zephyr_userprofile"."last_pointer_updater", "zephyr_userprofile"."realm_id", "zephyr_userprofile"."api_key", "zephyr_userprofile"."enable_desktop_notifications", "zephyr_userprofile"."enter_sends", "zephyr_userprofile"."tutorial_status", "zephyr_realm"."id", "zephyr_realm"."domain", "zephyr_realm"."restricted_to_domain", "zephyr_recipient"."id", "zephyr_recipient"."type_id", "zephyr_recipient"."type", "zephyr_client"."id", "zephyr_client"."name" FROM "zephyr_message" INNER JOIN "zephyr_userprofile" ON ( "zephyr_message"."sender_id" = "zephyr_userprofile"."id" ) INNER JOIN "zephyr_realm" ON ( "zephyr_userprofile"."realm_id" = "zephyr_realm"."id" ) INNER JOIN "zephyr_recipient" ON ( "zephyr_message"."recipient_id" = "zephyr_recipient"."id" ) INNER JOIN "zephyr_client" ON ( "zephyr_message"."sending_client_id" = "zephyr_client"."id" ) WHERE "zephyr_message"."id" > 4941883
with the message id filled in as the result of the first query. The
new query differs from the original only in that its ORDER BY and
LIMIT clauses are replaced by a WHERE clause. The second query has
query plan:
Hash Join (cost=709.30..28048.18 rows=20544 width=365) (actual time=41.678..279.261 rows=25041 loops=1)
Hash Cond: (zephyr_message.recipient_id = zephyr_recipient.id)
-> Hash Join (cost=102.98..27056.66 rows=20544 width=355) (actual time=3.686..190.730 rows=25041 loops=1)
Hash Cond: (zephyr_message.sending_client_id = zephyr_client.id)
-> Hash Join (cost=101.73..26772.94 rows=20544 width=341) (actual time=3.649..143.695 rows=25041 loops=1)
Hash Cond: (zephyr_userprofile.realm_id = zephyr_realm.id)
-> Hash Join (cost=99.99..26488.71 rows=20544 width=323) (actual time=3.578..96.746 rows=25041 loops=1)
Hash Cond: (zephyr_message.sender_id = zephyr_userprofile.id)
-> Index Scan using zephyr_message_pkey on zephyr_message (cost=0.00..26106.24 rows=20544 width=159) (actual time=0.017..41.980 rows=25041 loops=1)
Index Cond: (id > 4941883)
-> Hash (cost=83.33..83.33 rows=1333 width=164) (actual time=3.548..3.548 rows=1333 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 275kB
-> Seq Scan on zephyr_userprofile (cost=0.00..83.33 rows=1333 width=164) (actual time=0.006..1.646 rows=1333 loops=1)
-> Hash (cost=1.33..1.33 rows=33 width=18) (actual time=0.064..0.064 rows=33 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 2kB
-> Seq Scan on zephyr_realm (cost=0.00..1.33 rows=33 width=18) (actual time=0.003..0.033 rows=33 loops=1)
-> Hash (cost=1.11..1.11 rows=11 width=14) (actual time=0.027..0.027 rows=11 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 1kB
-> Seq Scan on zephyr_client (cost=0.00..1.11 rows=11 width=14) (actual time=0.003..0.013 rows=11 loops=1)
-> Hash (cost=335.03..335.03 rows=21703 width=10) (actual time=37.974..37.974 rows=21761 loops=1)
Buckets: 4096 Batches: 1 Memory Usage: 893kB
-> Seq Scan on zephyr_recipient (cost=0.00..335.03 rows=21703 width=10) (actual time=0.004..18.443 rows=21761 loops=1)
Total runtime: 299.300 ms
(imported from commit b2a70cccc47be7970df407c6be00eccd2e8be82a)
The fact that we were dumping this cache and not refilling it seems to
be one of the causes of Tornado restarts being a lot slower on prod
than on local systems.
(imported from commit a32a759f4dfb591706ede1cce2d38f5c3704193c)
On my laptop, this saves about 80 milliseconds per 1000 messages
requested via get_old_messages queries. Since we only have one
memcached process and it does not run with special priority, this
might have significant impact on load during server restarts.
(imported from commit 06ad13f32f4a6d87a0664c96297ef9843f410ac5)
Timing out within the Twitter portion of the render causes the message
to still go through (without a preview). If we don't timeout here, it
causes the entire Markdown render to timeout, which rejects the
message in its entirety -- a far worse outcome.
(imported from commit f510a56f48afa46da8ec6277496fa03374cdb042)
See PEP 328[1] for details. This feature was introduced in Python 2.5 and
will become mandatory in Python 3.
[1]: http://www.python.org/dev/peps/pep-0328
(imported from commit 7444eeba8a08d5f91b94c7921848f2274979bd76)
Otherwise these logs will end up all getting split up when we switch
to the new deployment model.
(imported from commit 0514c296470be7113cab6c2f48e8dd33f1b9353d)