This adds a frontend for the analytics system we've had for a few
months, showing several graphs of the data in Zulip.
There's a ton more that we can do with this tooling, but this initial
version is enough to provide users with a pretty good experience.
Fixes#2052.
Makes a number of simplications to the analytics views code. The main one is
that we now return the entire data series, even if the data is eventually
going to go into a pie chart. This was prompted by us wanting several
different pie charts for each stat (one for last 30 days, one for all time,
etc), but I think it is also a more natural API. The total amount of data
being sent for the pie charts now is maybe half of what is being sent for
our single 'hourly' stat, or maybe up to 10,000 ints per year the
organization has been around.
The other big change is that the data being sent back is now always explicit
about whether it is data about the realm (stored in data['realm'], or data
about the user (stored in data['user']).
Having both messages_sent:hour and messages_sent:is_bot:day is confusing,
since a single messages_sent:is_bot:hour would have a superset of the
information and take less total space. This commit and its parent together
replace the two stats with a single messages_sent:is_bot:hour.
Includes a database migration. The interval field was originally there to
facilitate time aggregation (e.g. aggregate_hour_to_day), but we now do such
aggregations in views code or in the frontend.
A few reasons:
* Our two other subgroup'd message stats in UserCount are at CountStat.DAY
frequency (messages_sent:is_bot and messages_sent:message_type).
* Keeping this stat at hourly frequency would likely double the size of our
analytics table, given the current stats. (Counterpoint: if there are
roughly as many active streams as active users, and we keep
messages_sent_to_stream:is_bot at hourly frequency, then maybe this stat
is only a 30% or 50% increase).
* We're currently only showing this on the frontend as a pie chart anyway.
Previously, this function seemed ambivalent about whether it was generating
a series of abstract data points or a series of data points that would
correspond to times. Switch firmly to the latter, so e.g. if the frequency
changes, so will the length of the output sequence.
Not sure if this would actually be a performance problem in practice, but
this was originally making a database query for each subgroup (instead of
just a single query getting data for all the subgroups).
Also removed the filter against the interval column, which will soon not be
needed (interval will be uniquely determined by the property).
Adds two things to TestCountStats.setUp():
* A realm with no messages, that generally should not show up in *Count
tables,
* Users/streams/messages created at 0, 1, 61, and 1441 (just over a day)
minutes ago (previously was 0, 60), to better test the start_time/end_time
in the queries, and the frequency/interval setting in the CountStats.
Fixes an error in the definition of
COUNT_STATS['messages_sent_to_stream:is_bot']. The CountStat needs a
group_by argument since it is supposed to group by UserProfile.is_bot.
This query counts the number of messages each user has sent, subgroup'd by
whether the message was a private_message (PM or sent to a huddle), sent to
a 'private_stream', or sent to a 'public_stream'.
We need to join on zerver_stream to find out whether stream messages were
sent to public streams or private streams, but it needs to be a LEFT JOIN
rather than a JOIN so that we preserve the messages sent to non-streams.
We were updating FillState with FillState.objects.filter(..).update(..),
which does not update the last_modified field (which has auto_now=True).
The correct incantation is the save() method of the actual FillState
object.
interval refers to a time interval, and frequency refers to something that
semantically means something closer to 'hourly' or 'daily'.
Currently, interval can have values 'hour', 'day', or 'gauge', and frequency
can only have values 'hour' and 'day'.