zulip/zerver/lib/validator.py

132 lines
4.6 KiB
Python
Raw Normal View History

'''
This module sets up a scheme for validating that arbitrary Python
objects are correctly typed. It is totally decoupled from Django,
composable, easily wrapped, and easily extended.
A validator takes two parameters--var_name and val--and returns an
error if val is not the correct type. The var_name parameter is used
to format error messages. Validators return None when there are no errors.
Example primitive validators are check_string, check_int, and check_bool.
Compound validators are created by check_list and check_dict. Note that
those functions aren't directly called for validation; instead, those
functions are called to return other functions that adhere to the validator
contract. This is similar to how Python decorators are often parameterized.
The contract for check_list and check_dict is that they get passed in other
validators to apply to their items. This allows you to build up validators
for arbitrarily complex validators. See ValidatorTestCase for example usage.
A simple example of composition is this:
2016-05-31 15:58:35 +02:00
check_list(check_string)('my_list', ['a', 'b', 'c']) is None
To extend this concept, it's simply a matter of writing your own validator
for any particular type of object.
'''
from __future__ import absolute_import
from django.utils.translation import ugettext as _
import six
from typing import Any, Callable, Iterable, Optional, Tuple, TypeVar
Validator = Callable[[str, Any], Optional[str]]
def check_string(var_name, val):
# type: (str, Any) -> Optional[str]
if not isinstance(val, six.string_types):
return _('%s is not a string') % (var_name,)
return None
def check_int(var_name, val):
# type: (str, Any) -> Optional[str]
if not isinstance(val, int):
return _('%s is not an integer') % (var_name,)
return None
def check_bool(var_name, val):
# type: (str, Any) -> Optional[str]
if not isinstance(val, bool):
return _('%s is not a boolean') % (var_name,)
return None
def check_none_or(sub_validator):
# type: (Validator) -> Validator
def f(var_name, val):
# type: (str, Any) -> Optional[str]
if val is None:
return None
else:
return sub_validator(var_name, val)
return f
def check_list(sub_validator, length=None):
# type: (Validator, Optional[int]) -> Validator
def f(var_name, val):
# type: (str, Any) -> Optional[str]
if not isinstance(val, list):
return _('%s is not a list') % (var_name,)
if length is not None and length != len(val):
return (_('%(container)s should have exactly %(length)s items') %
{'container': var_name, 'length': length})
if sub_validator:
for i, item in enumerate(val):
vname = '%s[%d]' % (var_name, i)
error = sub_validator(vname, item)
if error:
return error
return None
return f
def check_dict(required_keys):
# type: (Iterable[Tuple[str, Validator]]) -> Validator
def f(var_name, val):
# type: (str, Any) -> Optional[str]
if not isinstance(val, dict):
return _('%s is not a dict') % (var_name,)
for k, sub_validator in required_keys:
if k not in val:
return (_('%(key_name)s key is missing from %(var_name)s') %
{'key_name': k, 'var_name': var_name})
vname = '%s["%s"]' % (var_name, k)
error = sub_validator(vname, val[k])
if error:
return error
return None
return f
def check_variable_type(allowed_type_funcs):
# type: (Iterable[Validator]) -> Validator
"""
Use this validator if an argument is of a variable type (e.g. processing
properties that might be strings or booleans).
`allowed_type_funcs`: the check_* validator functions for the possible data
types for this variable.
"""
def enumerated_type_check(var_name, val):
# type: (str, Any) -> Optional[str]
for func in allowed_type_funcs:
if not func(var_name, val):
return None
return _('%s is not an allowed_type') % (var_name,)
return enumerated_type_check
def equals(expected_val):
# type: (Any) -> Validator
def f(var_name, val):
# type: (str, Any) -> Optional[str]
if val != expected_val:
return (_('%(variable)s != %(expected_value)s (%(value)s is wrong)') %
{'variable': var_name,
'expected_value': expected_val,
'value': val})
return None
return f