zulip/zerver/lib/rate_limiter.py

285 lines
9.8 KiB
Python
Raw Normal View History

import os
from typing import List, Optional, Tuple
from django.conf import settings
from django.http import HttpRequest
from zerver.lib.exceptions import RateLimited
from zerver.lib.redis_utils import get_redis_client
from zerver.lib.utils import statsd
from zerver.models import UserProfile
import logging
import redis
import time
# Implement a rate-limiting scheme inspired by the one described here, but heavily modified
# http://blog.domaintools.com/2013/04/rate-limiting-with-redis/
client = get_redis_client()
rules = settings.RATE_LIMITING_RULES # type: List[Tuple[int, int]]
KEY_PREFIX = ''
logger = logging.getLogger(__name__)
class RateLimiterLockingException(Exception):
pass
class RateLimitedObject:
def get_keys(self) -> List[str]:
key_fragment = self.key_fragment()
return ["{}ratelimit:{}:{}".format(KEY_PREFIX, key_fragment, keytype)
for keytype in ['list', 'zset', 'block']]
def key_fragment(self) -> str:
raise NotImplementedError()
def rules(self) -> List[Tuple[int, int]]:
raise NotImplementedError()
def __str__(self) -> str:
raise NotImplementedError()
class RateLimitedUser(RateLimitedObject):
def __init__(self, user: UserProfile, domain: str='all') -> None:
self.user = user
self.domain = domain
def __str__(self) -> str:
return "Id: {}".format(self.user.id)
def key_fragment(self) -> str:
return "{}:{}:{}".format(type(self.user), self.user.id, self.domain)
def rules(self) -> List[Tuple[int, int]]:
if self.user.rate_limits != "":
result = [] # type: List[Tuple[int, int]]
for limit in self.user.rate_limits.split(','):
(seconds, requests) = limit.split(':', 2)
result.append((int(seconds), int(requests)))
return result
return rules
def bounce_redis_key_prefix_for_testing(test_name: str) -> None:
global KEY_PREFIX
KEY_PREFIX = test_name + ':' + str(os.getpid()) + ':'
def max_api_calls(entity: RateLimitedObject) -> int:
"Returns the API rate limit for the highest limit"
return entity.rules()[-1][1]
def max_api_window(entity: RateLimitedObject) -> int:
"Returns the API time window for the highest limit"
return entity.rules()[-1][0]
def add_ratelimit_rule(range_seconds: int, num_requests: int) -> None:
"Add a rate-limiting rule to the ratelimiter"
global rules
rules.append((range_seconds, num_requests))
rules.sort(key=lambda x: x[0])
def remove_ratelimit_rule(range_seconds: int, num_requests: int) -> None:
global rules
rules = [x for x in rules if x[0] != range_seconds and x[1] != num_requests]
def block_access(entity: RateLimitedObject, seconds: int) -> None:
"Manually blocks an entity for the desired number of seconds"
_, _, blocking_key = entity.get_keys()
with client.pipeline() as pipe:
pipe.set(blocking_key, 1)
pipe.expire(blocking_key, seconds)
pipe.execute()
def unblock_access(entity: RateLimitedObject) -> None:
_, _, blocking_key = entity.get_keys()
client.delete(blocking_key)
def clear_history(entity: RateLimitedObject) -> None:
'''
This is only used by test code now, where it's very helpful in
allowing us to run tests quickly, by giving a user a clean slate.
'''
for key in entity.get_keys():
client.delete(key)
def _get_api_calls_left(entity: RateLimitedObject, range_seconds: int, max_calls: int) -> Tuple[int, float]:
list_key, set_key, _ = entity.get_keys()
# Count the number of values in our sorted set
# that are between now and the cutoff
now = time.time()
boundary = now - range_seconds
with client.pipeline() as pipe:
# Count how many API calls in our range have already been made
pipe.zcount(set_key, boundary, now)
# Get the newest call so we can calculate when the ratelimit
# will reset to 0
pipe.lindex(list_key, 0)
results = pipe.execute()
count = results[0] # type: int
newest_call = results[1] # type: Optional[bytes]
calls_left = max_calls - count
if newest_call is not None:
time_reset = now + (range_seconds - (now - float(newest_call)))
else:
time_reset = now
return calls_left, time_reset
def api_calls_left(entity: RateLimitedObject) -> Tuple[int, float]:
"""Returns how many API calls in this range this client has, as well as when
the rate-limit will be reset to 0"""
max_window = max_api_window(entity)
max_calls = max_api_calls(entity)
return _get_api_calls_left(entity, max_window, max_calls)
def is_ratelimited(entity: RateLimitedObject) -> Tuple[bool, float]:
"Returns a tuple of (rate_limited, time_till_free)"
list_key, set_key, blocking_key = entity.get_keys()
rules = entity.rules()
if len(rules) == 0:
return False, 0.0
# Go through the rules from shortest to longest,
# seeing if this user has violated any of them. First
# get the timestamps for each nth items
with client.pipeline() as pipe:
for _, request_count in rules:
pipe.lindex(list_key, request_count - 1) # 0-indexed list
# Get blocking info
pipe.get(blocking_key)
pipe.ttl(blocking_key)
rule_timestamps = pipe.execute() # type: List[Optional[bytes]]
# Check if there is a manual block on this API key
blocking_ttl_b = rule_timestamps.pop()
key_blocked = rule_timestamps.pop()
if key_blocked is not None:
# We are manually blocked. Report for how much longer we will be
if blocking_ttl_b is None:
blocking_ttl = 0.5
else:
blocking_ttl = int(blocking_ttl_b)
return True, blocking_ttl
now = time.time()
for timestamp, (range_seconds, num_requests) in zip(rule_timestamps, rules):
# Check if the nth timestamp is newer than the associated rule. If so,
# it means we've hit our limit for this rule
if timestamp is None:
continue
boundary = float(timestamp) + range_seconds
if boundary > now:
free = boundary - now
return True, free
# No api calls recorded yet
return False, 0.0
def incr_ratelimit(entity: RateLimitedObject) -> None:
"""Increases the rate-limit for the specified entity"""
list_key, set_key, _ = entity.get_keys()
now = time.time()
# If we have no rules, we don't store anything
if len(rules) == 0:
return
# Start redis transaction
with client.pipeline() as pipe:
count = 0
while True:
try:
# To avoid a race condition between getting the element we might trim from our list
# and removing it from our associated set, we abort this whole transaction if
# another agent manages to change our list out from under us
# When watching a value, the pipeline is set to Immediate mode
pipe.watch(list_key)
# Get the last elem that we'll trim (so we can remove it from our sorted set)
last_val = pipe.lindex(list_key, max_api_calls(entity) - 1)
# Restart buffered execution
pipe.multi()
# Add this timestamp to our list
pipe.lpush(list_key, now)
# Trim our list to the oldest rule we have
pipe.ltrim(list_key, 0, max_api_calls(entity) - 1)
# Add our new value to the sorted set that we keep
# We need to put the score and val both as timestamp,
# as we sort by score but remove by value
pipe.zadd(set_key, {str(now): now})
# Remove the trimmed value from our sorted set, if there was one
if last_val is not None:
pipe.zrem(set_key, last_val)
# Set the TTL for our keys as well
api_window = max_api_window(entity)
pipe.expire(list_key, api_window)
pipe.expire(set_key, api_window)
pipe.execute()
# If no exception was raised in the execution, there were no transaction conflicts
break
except redis.WatchError:
if count > 10:
raise RateLimiterLockingException()
count += 1
continue
def rate_limit_entity(entity: RateLimitedObject) -> Tuple[bool, float]:
# Returns (ratelimited, secs_to_freedom)
ratelimited, time = is_ratelimited(entity)
if ratelimited:
statsd.incr("ratelimiter.limited.%s.%s" % (type(entity), str(entity)))
else:
try:
incr_ratelimit(entity)
except RateLimiterLockingException:
logger.warning("Deadlock trying to incr_ratelimit for %s:%s" % (
type(entity).__name__, str(entity)))
# rate-limit users who are hitting the API so hard we can't update our stats.
ratelimited = True
return ratelimited, time
def rate_limit_request_by_entity(request: HttpRequest, entity: RateLimitedObject) -> None:
ratelimited, time = rate_limit_entity(entity)
entity_type = type(entity).__name__
if not hasattr(request, '_ratelimit'):
request._ratelimit = {}
request._ratelimit[entity_type] = {}
request._ratelimit[entity_type]['applied_limits'] = True
request._ratelimit[entity_type]['secs_to_freedom'] = time
request._ratelimit[entity_type]['over_limit'] = ratelimited
# Abort this request if the user is over their rate limits
if ratelimited:
# Pass information about what kind of entity got limited in the exception:
raise RateLimited(entity_type)
calls_remaining, time_reset = api_calls_left(entity)
request._ratelimit[entity_type]['remaining'] = calls_remaining
request._ratelimit[entity_type]['secs_to_freedom'] = time_reset