mirror of https://github.com/zulip/zulip.git
94 lines
3.6 KiB
Python
94 lines
3.6 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
from __future__ import absolute_import
|
||
|
|
||
|
from zerver.models import UserProfile, Realm, UserActivity, UserActivityInterval
|
||
|
|
||
|
from django.utils.timezone import utc
|
||
|
|
||
|
from datetime import timedelta, datetime
|
||
|
from itertools import chain
|
||
|
|
||
|
def median(data):
|
||
|
data = sorted(data)
|
||
|
|
||
|
size = len(data)
|
||
|
if size % 2 == 1:
|
||
|
return data[size//2]
|
||
|
else:
|
||
|
before = size//2 - 1
|
||
|
after = size//2
|
||
|
return (data[before] + data[after]) / 2.0
|
||
|
|
||
|
def active_users_to_measure():
|
||
|
# Return a list of active users we want to count towards various
|
||
|
# statistics. This eliminates bots, @zulip.com, @customer29.invalid and customer3.invalid
|
||
|
exclude_realms = ["zulip.com", "customer29.invalid", "customer3.invalid"]
|
||
|
return UserProfile.objects.filter(is_bot=False, is_active=True) \
|
||
|
.exclude(realm__domain__in=exclude_realms) \
|
||
|
.select_related()
|
||
|
|
||
|
# Return a set of users who have done some activity in the given timespan--that is,
|
||
|
# we have a UserActivity row for them. This counts pointer moves, flag updates, etc.
|
||
|
def users_active_between(begin, end):
|
||
|
activities = UserActivity.objects.filter(last_visit__gt=begin, last_visit__lt=end)
|
||
|
active = set([a.user_profile for a in activities])
|
||
|
|
||
|
interesting_users = set(active_users_to_measure())
|
||
|
return active.intersection(interesting_users)
|
||
|
|
||
|
# Return the amount of Zulip usage for this user between the two
|
||
|
# given dates
|
||
|
def seconds_usage_between(user_profile, begin, end):
|
||
|
intervals = UserActivityInterval.objects.filter(user_profile=user_profile, end__gte=begin, start__lte=end)
|
||
|
duration = timedelta(0)
|
||
|
for interval in intervals:
|
||
|
start = max(begin, interval.start)
|
||
|
finish = min(end, interval.end)
|
||
|
duration += finish-start
|
||
|
return duration
|
||
|
|
||
|
# Return a list of how many seconds each user has been engaging with the app on a given day
|
||
|
def seconds_active_during_day(day):
|
||
|
begin_day = day.replace(hour=0, minute=0, second=0, microsecond=0, tzinfo=utc)
|
||
|
end_day = day.replace(hour=23, minute=59, second=59, microsecond=0, tzinfo=utc)
|
||
|
active_users = users_active_between(begin_day, end_day)
|
||
|
|
||
|
# Exclude Friday CUSTOMER4 activity numbers
|
||
|
if day.weekday() == 4:
|
||
|
active_users = [u for u in active_users if u.realm.domain != 'users.customer4.invalid']
|
||
|
|
||
|
return [seconds_usage_between(user, begin_day, end_day).total_seconds() for user in active_users]
|
||
|
|
||
|
def calculate_stats(data):
|
||
|
if len(data) == 0:
|
||
|
return 0, 0
|
||
|
|
||
|
mean_data = sum(data) / len(data)
|
||
|
median_data = median(data)
|
||
|
|
||
|
return {'mean': str(timedelta(seconds=mean_data)), 'median': str(timedelta(seconds=median_data)), '# data points': len(data)}
|
||
|
|
||
|
# Return an info dict {mean: , median} containing the mean/median seconds users were active on a given day
|
||
|
def activity_averages_during_day(day):
|
||
|
seconds_active = seconds_active_during_day(day)
|
||
|
return calculate_stats(seconds_active)
|
||
|
|
||
|
# Returns an info dict {mean: , median} with engagement numbers for all users according
|
||
|
# to active_users_to_measure. This will ignore weekends, and ignore users.customer4.invalid
|
||
|
# on Fridays
|
||
|
def activity_averages_between(begin, end, by_day=True):
|
||
|
seconds_active = {}
|
||
|
for i in range((end - begin).days):
|
||
|
day = begin + timedelta(days=i)
|
||
|
|
||
|
# Ignore weekends
|
||
|
if day.weekday() in [5, 6]:
|
||
|
continue
|
||
|
|
||
|
seconds_active[day] = seconds_active_during_day(day)
|
||
|
|
||
|
if by_day:
|
||
|
return dict((day, calculate_stats(values)) for day, values in seconds_active.iteritems())
|
||
|
else:
|
||
|
return calculate_stats(list(chain.from_iterable(seconds_active.values())))
|