zulip/zerver/lib/digest.py

267 lines
10 KiB
Python
Raw Normal View History

from typing import Any, Callable, Dict, Iterable, List, Set, Tuple, Text
from collections import defaultdict
import datetime
import pytz
2016-06-04 21:50:32 +02:00
from django.db.models import Q, QuerySet
from django.template import loader
from django.conf import settings
from django.utils.timezone import now as timezone_now
from zerver.lib.notifications import build_message_list, hash_util_encode, \
one_click_unsubscribe_link
from zerver.lib.send_email import send_future_email, FromAddress
from zerver.models import UserProfile, UserMessage, Recipient, Stream, \
Subscription, UserActivity, get_active_streams, get_user_profile_by_id, \
Realm
from zerver.context_processors import common_context
from zerver.lib.queue import queue_json_publish
from zerver.lib.logging_util import create_logger
logger = create_logger(__name__, settings.DIGEST_LOG_PATH, 'DEBUG')
VALID_DIGEST_DAY = 1 # Tuesdays
DIGEST_CUTOFF = 5
# Digests accumulate 4 types of interesting traffic for a user:
# 1. Missed PMs
# 2. New streams
# 3. New users
# 4. Interesting stream traffic, as determined by the longest and most
# diversely comment upon topics.
def inactive_since(user_profile, cutoff):
# type: (UserProfile, datetime.datetime) -> bool
# Hasn't used the app in the last DIGEST_CUTOFF (5) days.
most_recent_visit = [row.last_visit for row in
UserActivity.objects.filter(
user_profile=user_profile)]
if not most_recent_visit:
# This person has never used the app.
return True
last_visit = max(most_recent_visit)
return last_visit < cutoff
def should_process_digest(realm_str):
# type: (str) -> bool
if realm_str in settings.SYSTEM_ONLY_REALMS:
# Don't try to send emails to system-only realms
return False
return True
# Changes to this should also be reflected in
# zerver/worker/queue_processors.py:DigestWorker.consume()
def queue_digest_recipient(user_profile, cutoff):
# type: (UserProfile, datetime.datetime) -> None
# Convert cutoff to epoch seconds for transit.
event = {"user_profile_id": user_profile.id,
"cutoff": cutoff.strftime('%s')}
queue_json_publish("digest_emails", event, lambda event: None)
def enqueue_emails(cutoff):
# type: (datetime.datetime) -> None
# To be really conservative while we don't have user timezones or
# special-casing for companies with non-standard workweeks, only
# try to send mail on Tuesdays.
if timezone_now().weekday() != VALID_DIGEST_DAY:
return
for realm in Realm.objects.filter(deactivated=False, show_digest_email=True):
if not should_process_digest(realm.string_id):
continue
user_profiles = UserProfile.objects.filter(
realm=realm, is_active=True, is_bot=False, enable_digest_emails=True)
for user_profile in user_profiles:
if inactive_since(user_profile, cutoff):
queue_digest_recipient(user_profile, cutoff)
logger.info("%s is inactive, queuing for potential digest" % (
user_profile.email,))
def gather_hot_conversations(user_profile, stream_messages):
2016-06-04 21:50:32 +02:00
# type: (UserProfile, QuerySet) -> List[Dict[str, Any]]
# Gather stream conversations of 2 types:
# 1. long conversations
# 2. conversations where many different people participated
#
# Returns a list of dictionaries containing the templating
# information for each hot conversation.
conversation_length = defaultdict(int) # type: Dict[Tuple[int, Text], int]
conversation_diversity = defaultdict(set) # type: Dict[Tuple[int, Text], Set[Text]]
for user_message in stream_messages:
if not user_message.message.sent_by_human():
# Don't include automated messages in the count.
continue
key = (user_message.message.recipient.type_id,
user_message.message.subject)
conversation_diversity[key].add(
user_message.message.sender.full_name)
conversation_length[key] += 1
diversity_list = list(conversation_diversity.items())
diversity_list.sort(key=lambda entry: len(entry[1]), reverse=True)
length_list = list(conversation_length.items())
length_list.sort(key=lambda entry: entry[1], reverse=True)
# Get up to the 4 best conversations from the diversity list
# and length list, filtering out overlapping conversations.
hot_conversations = [elt[0] for elt in diversity_list[:2]]
for candidate, _ in length_list:
if candidate not in hot_conversations:
hot_conversations.append(candidate)
if len(hot_conversations) >= 4:
break
# There was so much overlap between the diversity and length lists that we
# still have < 4 conversations. Try to use remaining diversity items to pad
# out the hot conversations.
num_convos = len(hot_conversations)
if num_convos < 4:
hot_conversations.extend([elt[0] for elt in diversity_list[num_convos:4]])
hot_conversation_render_payloads = []
for h in hot_conversations:
stream_id, subject = h
users = list(conversation_diversity[h])
count = conversation_length[h]
# We'll display up to 2 messages from the conversation.
2016-12-03 18:07:49 +01:00
first_few_messages = [user_message.message for user_message in
stream_messages.filter(
2017-01-24 06:02:39 +01:00
message__recipient__type_id=stream_id,
message__subject=subject)[:2]]
teaser_data = {"participants": users,
"count": count - len(first_few_messages),
2016-12-02 08:15:16 +01:00
"first_few_messages": build_message_list(
2017-01-24 06:02:39 +01:00
user_profile, first_few_messages)}
hot_conversation_render_payloads.append(teaser_data)
return hot_conversation_render_payloads
def gather_new_users(user_profile, threshold):
# type: (UserProfile, datetime.datetime) -> Tuple[int, List[Text]]
# Gather information on users in the realm who have recently
# joined.
if user_profile.realm.is_zephyr_mirror_realm:
new_users = [] # type: List[UserProfile]
else:
new_users = list(UserProfile.objects.filter(
2017-01-24 07:06:13 +01:00
realm=user_profile.realm, date_joined__gt=threshold,
is_bot=False))
user_names = [user.full_name for user in new_users]
return len(user_names), user_names
def gather_new_streams(user_profile, threshold):
# type: (UserProfile, datetime.datetime) -> Tuple[int, Dict[str, List[Text]]]
if user_profile.realm.is_zephyr_mirror_realm:
new_streams = [] # type: List[Stream]
else:
new_streams = list(get_active_streams(user_profile.realm).filter(
2017-01-24 07:06:13 +01:00
invite_only=False, date_created__gt=threshold))
base_url = u"%s/ # narrow/stream/" % (user_profile.realm.uri,)
streams_html = []
streams_plain = []
for stream in new_streams:
narrow_url = base_url + hash_util_encode(stream.name)
stream_link = u"<a href='%s'>%s</a>" % (narrow_url, stream.name)
streams_html.append(stream_link)
streams_plain.append(stream.name)
return len(new_streams), {"html": streams_html, "plain": streams_plain}
def enough_traffic(unread_pms, hot_conversations, new_streams, new_users):
# type: (Text, Text, int, int) -> bool
if unread_pms or hot_conversations:
# If you have any unread traffic, good enough.
return True
if new_streams and new_users:
# If you somehow don't have any traffic but your realm did get
# new streams and users, good enough.
return True
return False
def handle_digest_email(user_profile_id, cutoff):
# type: (int, float) -> None
2017-08-15 21:53:48 +02:00
user_profile = get_user_profile_by_id(user_profile_id)
# We are disabling digest emails for soft deactivated users for the time.
# TODO: Find an elegant way to generate digest emails for these users.
if user_profile.long_term_idle:
return None
# Convert from epoch seconds to a datetime object.
cutoff_date = datetime.datetime.fromtimestamp(int(cutoff), tz=pytz.utc)
all_messages = UserMessage.objects.filter(
user_profile=user_profile,
2016-06-04 21:50:32 +02:00
message__pub_date__gt=cutoff_date).order_by("message__pub_date")
context = common_context(user_profile)
# Start building email template data.
context.update({
'realm_name': user_profile.realm.name,
'name': user_profile.full_name,
'unsubscribe_link': one_click_unsubscribe_link(user_profile, "digest")
2017-01-24 06:34:26 +01:00
})
# Gather recent missed PMs, re-using the missed PM email logic.
# You can't have an unread message that you sent, but when testing
# this causes confusion so filter your messages out.
pms = all_messages.filter(
2016-12-02 08:15:05 +01:00
~Q(message__recipient__type=Recipient.STREAM) &
~Q(message__sender=user_profile))
# Show up to 4 missed PMs.
pms_limit = 4
context['unread_pms'] = build_message_list(
user_profile, [pm.message for pm in pms[:pms_limit]])
context['remaining_unread_pms_count'] = min(0, len(pms) - pms_limit)
2016-12-03 18:07:49 +01:00
home_view_recipients = [sub.recipient for sub in
Subscription.objects.filter(
user_profile=user_profile,
active=True,
in_home_view=True)]
stream_messages = all_messages.filter(
message__recipient__type=Recipient.STREAM,
message__recipient__in=home_view_recipients)
# Gather hot conversations.
context["hot_conversations"] = gather_hot_conversations(
user_profile, stream_messages)
# Gather new streams.
new_streams_count, new_streams = gather_new_streams(
2016-06-04 21:50:32 +02:00
user_profile, cutoff_date)
context["new_streams"] = new_streams
context["new_streams_count"] = new_streams_count
# Gather users who signed up recently.
new_users_count, new_users = gather_new_users(
2016-06-04 21:50:32 +02:00
user_profile, cutoff_date)
context["new_users"] = new_users
# We don't want to send emails containing almost no information.
if enough_traffic(context["unread_pms"], context["hot_conversations"],
new_streams_count, new_users_count):
logger.info("Sending digest email for %s" % (user_profile.email,))
# Send now, as a ScheduledEmail
send_future_email('zerver/emails/digest', to_user_id=user_profile.id,
from_name="Zulip Digest", from_address=FromAddress.NOREPLY,
context=context)