zulip/zerver/tornado/handlers.py

285 lines
12 KiB
Python
Raw Normal View History

import logging
from contextlib import suppress
from typing import Any, Collection, Dict, List, Optional
from urllib.parse import unquote
import tornado.web
from asgiref.sync import sync_to_async
from django import http
tornado: Rewrite Django integration to duplicate less code. Since essentially the first use of Tornado in Zulip, we've been maintaining our Tornado+Django system, AsyncDjangoHandler, with several hundred lines of Django code copied into it. The goal for that code was simple: We wanted a way to use our Django middleware (for code sharing reasons) inside a Tornado process (since we wanted to use Tornado for our async events system). As part of the Django 2.2.x upgrade, I looked at upgrading this implementation to be based off modern Django, and it's definitely possible to do that: * Continue forking load_middleware to save response middleware. * Continue manually running the Django response middleware. * Continue working out a hack involving copying all of _get_response to change a couple lines allowing us our Tornado code to not actually return the Django HttpResponse so we can long-poll. The previous hack of returning None stopped being viable with the Django 2.2 MiddlewareMixin.__call__ implementation. But I decided to take this opportunity to look at trying to avoid copying material Django code, and there is a way to do it: * Replace RespondAsynchronously with a response.asynchronous attribute on the HttpResponse; this allows Django to run its normal plumbing happily in a way that should be stable over time, and then we proceed to discard the response inside the Tornado `get()` method to implement long-polling. (Better yet might be raising an exception?). This lets us eliminate maintaining a patched copy of _get_response. * Removing the @asynchronous decorator, which didn't add anything now that we only have one API endpoint backend (with two frontend call points) that could call into this. Combined with the last bullet, this lets us remove a significant hack from our never_cache_responses function. * Calling the normal Django `get_response` method from zulip_finish after creating a duplicate request to process, rather than writing totally custom code to do that. This lets us eliminate maintaining a patched copy of Django's load_middleware. * Adding detailed comments explaining how this is supposed to work, what problems we encounter, and how we solve various problems, which is critical to being able to modify this code in the future. A key advantage of these changes is that the exact same code should work on Django 1.11, Django 2.2, and Django 3.x, because we're no longer copying large blocks of core Django code and thus should be much less vulnerable to refactors. There may be a modest performance downside, in that we now run both request and response middleware twice when longpolling (once for the request we discard). We may be able to avoid the expensive part of it, Zulip's own request/response middleware, with a bit of additional custom code to save work for requests where we're planning to discard the response. Profiling will be important to understanding what's worth doing here.
2020-02-06 22:09:10 +01:00
from django.core import signals
from django.core.handlers import base
from django.core.handlers.wsgi import WSGIRequest, get_script_name
from django.http import HttpRequest, HttpResponse
from django.urls import set_script_prefix
from django.utils.cache import patch_vary_headers
from tornado.iostream import StreamClosedError
from tornado.wsgi import WSGIContainer
from typing_extensions import override
from zerver.lib.response import AsynchronousResponse, json_response
from zerver.tornado.descriptors import get_descriptor_by_handler_id
current_handler_id = 0
handlers: Dict[int, "AsyncDjangoHandler"] = {}
fake_wsgi_container = WSGIContainer(lambda environ, start_response: [])
def get_handler_by_id(handler_id: int) -> "AsyncDjangoHandler":
return handlers[handler_id]
def allocate_handler_id(handler: "AsyncDjangoHandler") -> int:
global current_handler_id
handlers[current_handler_id] = handler
handler_id = current_handler_id
current_handler_id += 1
return handler_id
def clear_handler_by_id(handler_id: int) -> None:
del handlers[handler_id]
def handler_stats_string() -> str:
return f"{len(handlers)} handlers, latest ID {current_handler_id}"
def finish_handler(handler_id: int, event_queue_id: str, contents: List[Dict[str, Any]]) -> None:
try:
# We do the import during runtime to avoid cyclic dependency
# with zerver.lib.request
from zerver.lib.request import RequestNotes
from zerver.middleware import async_request_timer_restart
# We call async_request_timer_restart here in case we are
# being finished without any events (because another
# get_events request has supplanted this request)
handler = get_handler_by_id(handler_id)
request = handler._request
assert request is not None
async_request_timer_restart(request)
log_data = RequestNotes.get_notes(request).log_data
assert log_data is not None
if len(contents) != 1:
log_data["extra"] = f"[{event_queue_id}/1]"
else:
log_data["extra"] = "[{}/1/{}]".format(event_queue_id, contents[0]["type"])
tornado.ioloop.IOLoop.current().add_callback(
handler.zulip_finish,
dict(result="success", msg="", events=contents, queue_id=event_queue_id),
request,
)
except Exception as e:
if not (
(isinstance(e, OSError) and str(e) == "Stream is closed")
or (isinstance(e, AssertionError) and str(e) == "Request closed")
):
logging.exception(
"Got error finishing handler for queue %s", event_queue_id, stack_info=True
)
class AsyncDjangoHandler(tornado.web.RequestHandler):
handler_id: int
SUPPORTED_METHODS: Collection[str] = {"GET", "HEAD", "POST", "DELETE"} # type: ignore[assignment] # https://github.com/tornadoweb/tornado/pull/3354
@override
def initialize(self, django_handler: base.BaseHandler) -> None:
self.django_handler = django_handler
tornado: Rewrite Django integration to duplicate less code. Since essentially the first use of Tornado in Zulip, we've been maintaining our Tornado+Django system, AsyncDjangoHandler, with several hundred lines of Django code copied into it. The goal for that code was simple: We wanted a way to use our Django middleware (for code sharing reasons) inside a Tornado process (since we wanted to use Tornado for our async events system). As part of the Django 2.2.x upgrade, I looked at upgrading this implementation to be based off modern Django, and it's definitely possible to do that: * Continue forking load_middleware to save response middleware. * Continue manually running the Django response middleware. * Continue working out a hack involving copying all of _get_response to change a couple lines allowing us our Tornado code to not actually return the Django HttpResponse so we can long-poll. The previous hack of returning None stopped being viable with the Django 2.2 MiddlewareMixin.__call__ implementation. But I decided to take this opportunity to look at trying to avoid copying material Django code, and there is a way to do it: * Replace RespondAsynchronously with a response.asynchronous attribute on the HttpResponse; this allows Django to run its normal plumbing happily in a way that should be stable over time, and then we proceed to discard the response inside the Tornado `get()` method to implement long-polling. (Better yet might be raising an exception?). This lets us eliminate maintaining a patched copy of _get_response. * Removing the @asynchronous decorator, which didn't add anything now that we only have one API endpoint backend (with two frontend call points) that could call into this. Combined with the last bullet, this lets us remove a significant hack from our never_cache_responses function. * Calling the normal Django `get_response` method from zulip_finish after creating a duplicate request to process, rather than writing totally custom code to do that. This lets us eliminate maintaining a patched copy of Django's load_middleware. * Adding detailed comments explaining how this is supposed to work, what problems we encounter, and how we solve various problems, which is critical to being able to modify this code in the future. A key advantage of these changes is that the exact same code should work on Django 1.11, Django 2.2, and Django 3.x, because we're no longer copying large blocks of core Django code and thus should be much less vulnerable to refactors. There may be a modest performance downside, in that we now run both request and response middleware twice when longpolling (once for the request we discard). We may be able to avoid the expensive part of it, Zulip's own request/response middleware, with a bit of additional custom code to save work for requests where we're planning to discard the response. Profiling will be important to understanding what's worth doing here.
2020-02-06 22:09:10 +01:00
# Prevent Tornado from automatically finishing the request
self._auto_finish = False
tornado: Rewrite Django integration to duplicate less code. Since essentially the first use of Tornado in Zulip, we've been maintaining our Tornado+Django system, AsyncDjangoHandler, with several hundred lines of Django code copied into it. The goal for that code was simple: We wanted a way to use our Django middleware (for code sharing reasons) inside a Tornado process (since we wanted to use Tornado for our async events system). As part of the Django 2.2.x upgrade, I looked at upgrading this implementation to be based off modern Django, and it's definitely possible to do that: * Continue forking load_middleware to save response middleware. * Continue manually running the Django response middleware. * Continue working out a hack involving copying all of _get_response to change a couple lines allowing us our Tornado code to not actually return the Django HttpResponse so we can long-poll. The previous hack of returning None stopped being viable with the Django 2.2 MiddlewareMixin.__call__ implementation. But I decided to take this opportunity to look at trying to avoid copying material Django code, and there is a way to do it: * Replace RespondAsynchronously with a response.asynchronous attribute on the HttpResponse; this allows Django to run its normal plumbing happily in a way that should be stable over time, and then we proceed to discard the response inside the Tornado `get()` method to implement long-polling. (Better yet might be raising an exception?). This lets us eliminate maintaining a patched copy of _get_response. * Removing the @asynchronous decorator, which didn't add anything now that we only have one API endpoint backend (with two frontend call points) that could call into this. Combined with the last bullet, this lets us remove a significant hack from our never_cache_responses function. * Calling the normal Django `get_response` method from zulip_finish after creating a duplicate request to process, rather than writing totally custom code to do that. This lets us eliminate maintaining a patched copy of Django's load_middleware. * Adding detailed comments explaining how this is supposed to work, what problems we encounter, and how we solve various problems, which is critical to being able to modify this code in the future. A key advantage of these changes is that the exact same code should work on Django 1.11, Django 2.2, and Django 3.x, because we're no longer copying large blocks of core Django code and thus should be much less vulnerable to refactors. There may be a modest performance downside, in that we now run both request and response middleware twice when longpolling (once for the request we discard). We may be able to avoid the expensive part of it, Zulip's own request/response middleware, with a bit of additional custom code to save work for requests where we're planning to discard the response. Profiling will be important to understanding what's worth doing here.
2020-02-06 22:09:10 +01:00
# Handler IDs are allocated here, and the handler ID map must
# be cleared when the handler finishes its response
self.handler_id = allocate_handler_id(self)
self._request: Optional[HttpRequest] = None
@override
def __repr__(self) -> str:
descriptor = get_descriptor_by_handler_id(self.handler_id)
return f"AsyncDjangoHandler<{self.handler_id}, {descriptor}>"
async def convert_tornado_request_to_django_request(self) -> HttpRequest:
# This takes the WSGI environment that Tornado received (which
# fully describes the HTTP request that was sent to Tornado)
# and pass it to Django's WSGIRequest to generate a Django
# HttpRequest object with the original Tornado request's HTTP
# headers, parameters, etc.
environ = fake_wsgi_container.environ(self.request)
environ["PATH_INFO"] = unquote(environ["PATH_INFO"])
# Django WSGIRequest setup code that should match logic from
# Django's WSGIHandler.__call__ before the call to
# `get_response()`.
set_script_prefix(get_script_name(environ))
await sync_to_async(
lambda: signals.request_started.send(sender=type(self.django_handler)),
thread_sensitive=True,
)()
self._request = WSGIRequest(environ)
# We do the import during runtime to avoid cyclic dependency
from zerver.lib.request import RequestNotes
# Provide a way for application code to access this handler
# given the HttpRequest object.
RequestNotes.get_notes(self._request).tornado_handler_id = self.handler_id
return self._request
async def write_django_response_as_tornado_response(self, response: HttpResponse) -> None:
# This takes a Django HttpResponse and copies its HTTP status
# code, headers, cookies, and content onto this
# tornado.web.RequestHandler (which is how Tornado prepares a
# response to write).
# Copy the HTTP status code.
self.set_status(response.status_code)
# Copy the HTTP headers (iterating through a Django
# HttpResponse is the way to access its headers as key/value pairs)
for h in response.items():
self.set_header(h[0], h[1])
# Copy any cookies
if not hasattr(self, "_new_cookies"):
python: Convert assignment type annotations to Python 3.6 style. This commit was split by tabbott; this piece covers the vast majority of files in Zulip, but excludes scripts/, tools/, and puppet/ to help ensure we at least show the right error messages for Xenial systems. We can likely further refine the remaining pieces with some testing. Generated by com2ann, with whitespace fixes and various manual fixes for runtime issues: - invoiced_through: Optional[LicenseLedger] = models.ForeignKey( + invoiced_through: Optional["LicenseLedger"] = models.ForeignKey( -_apns_client: Optional[APNsClient] = None +_apns_client: Optional["APNsClient"] = None - notifications_stream: Optional[Stream] = models.ForeignKey('Stream', related_name='+', null=True, blank=True, on_delete=CASCADE) - signup_notifications_stream: Optional[Stream] = models.ForeignKey('Stream', related_name='+', null=True, blank=True, on_delete=CASCADE) + notifications_stream: Optional["Stream"] = models.ForeignKey('Stream', related_name='+', null=True, blank=True, on_delete=CASCADE) + signup_notifications_stream: Optional["Stream"] = models.ForeignKey('Stream', related_name='+', null=True, blank=True, on_delete=CASCADE) - author: Optional[UserProfile] = models.ForeignKey('UserProfile', blank=True, null=True, on_delete=CASCADE) + author: Optional["UserProfile"] = models.ForeignKey('UserProfile', blank=True, null=True, on_delete=CASCADE) - bot_owner: Optional[UserProfile] = models.ForeignKey('self', null=True, on_delete=models.SET_NULL) + bot_owner: Optional["UserProfile"] = models.ForeignKey('self', null=True, on_delete=models.SET_NULL) - default_sending_stream: Optional[Stream] = models.ForeignKey('zerver.Stream', null=True, related_name='+', on_delete=CASCADE) - default_events_register_stream: Optional[Stream] = models.ForeignKey('zerver.Stream', null=True, related_name='+', on_delete=CASCADE) + default_sending_stream: Optional["Stream"] = models.ForeignKey('zerver.Stream', null=True, related_name='+', on_delete=CASCADE) + default_events_register_stream: Optional["Stream"] = models.ForeignKey('zerver.Stream', null=True, related_name='+', on_delete=CASCADE) -descriptors_by_handler_id: Dict[int, ClientDescriptor] = {} +descriptors_by_handler_id: Dict[int, "ClientDescriptor"] = {} -worker_classes: Dict[str, Type[QueueProcessingWorker]] = {} -queues: Dict[str, Dict[str, Type[QueueProcessingWorker]]] = {} +worker_classes: Dict[str, Type["QueueProcessingWorker"]] = {} +queues: Dict[str, Dict[str, Type["QueueProcessingWorker"]]] = {} -AUTH_LDAP_REVERSE_EMAIL_SEARCH: Optional[LDAPSearch] = None +AUTH_LDAP_REVERSE_EMAIL_SEARCH: Optional["LDAPSearch"] = None Signed-off-by: Anders Kaseorg <anders@zulipchat.com>
2020-04-22 01:09:50 +02:00
self._new_cookies: List[http.cookie.SimpleCookie[str]] = []
self._new_cookies.append(response.cookies)
# Copy the response content
self.write(response.content)
# Close the connection.
# While writing the response, we might realize that the
# user already closed the connection; that is fine.
with suppress(StreamClosedError):
await self.finish()
@override
async def get(self, *args: Any, **kwargs: Any) -> None:
request = await self.convert_tornado_request_to_django_request()
response = await sync_to_async(
lambda: self.django_handler.get_response(request), thread_sensitive=True
)()
try:
if isinstance(response, AsynchronousResponse):
# We import async_request_timer_restart during runtime
# to avoid cyclic dependency with zerver.lib.request
from zerver.middleware import async_request_timer_stop
tornado: Rewrite Django integration to duplicate less code. Since essentially the first use of Tornado in Zulip, we've been maintaining our Tornado+Django system, AsyncDjangoHandler, with several hundred lines of Django code copied into it. The goal for that code was simple: We wanted a way to use our Django middleware (for code sharing reasons) inside a Tornado process (since we wanted to use Tornado for our async events system). As part of the Django 2.2.x upgrade, I looked at upgrading this implementation to be based off modern Django, and it's definitely possible to do that: * Continue forking load_middleware to save response middleware. * Continue manually running the Django response middleware. * Continue working out a hack involving copying all of _get_response to change a couple lines allowing us our Tornado code to not actually return the Django HttpResponse so we can long-poll. The previous hack of returning None stopped being viable with the Django 2.2 MiddlewareMixin.__call__ implementation. But I decided to take this opportunity to look at trying to avoid copying material Django code, and there is a way to do it: * Replace RespondAsynchronously with a response.asynchronous attribute on the HttpResponse; this allows Django to run its normal plumbing happily in a way that should be stable over time, and then we proceed to discard the response inside the Tornado `get()` method to implement long-polling. (Better yet might be raising an exception?). This lets us eliminate maintaining a patched copy of _get_response. * Removing the @asynchronous decorator, which didn't add anything now that we only have one API endpoint backend (with two frontend call points) that could call into this. Combined with the last bullet, this lets us remove a significant hack from our never_cache_responses function. * Calling the normal Django `get_response` method from zulip_finish after creating a duplicate request to process, rather than writing totally custom code to do that. This lets us eliminate maintaining a patched copy of Django's load_middleware. * Adding detailed comments explaining how this is supposed to work, what problems we encounter, and how we solve various problems, which is critical to being able to modify this code in the future. A key advantage of these changes is that the exact same code should work on Django 1.11, Django 2.2, and Django 3.x, because we're no longer copying large blocks of core Django code and thus should be much less vulnerable to refactors. There may be a modest performance downside, in that we now run both request and response middleware twice when longpolling (once for the request we discard). We may be able to avoid the expensive part of it, Zulip's own request/response middleware, with a bit of additional custom code to save work for requests where we're planning to discard the response. Profiling will be important to understanding what's worth doing here.
2020-02-06 22:09:10 +01:00
# For asynchronous requests, this is where we exit
# without returning the HttpResponse that Django
# generated back to the user in order to long-poll the
# connection. We save some timers here in order to
# support accurate accounting of the total resources
# consumed by the request when it eventually returns a
# response and is logged.
async_request_timer_stop(request)
else:
# For normal/synchronous requests that don't end up
# long-polling, we just need to write the HTTP
# response that Django prepared for us via Tornado.
# Mark this handler ID as finished for Zulip's own tracking.
clear_handler_by_id(self.handler_id)
assert isinstance(response, HttpResponse)
await self.write_django_response_as_tornado_response(response)
finally:
tornado: Rewrite Django integration to duplicate less code. Since essentially the first use of Tornado in Zulip, we've been maintaining our Tornado+Django system, AsyncDjangoHandler, with several hundred lines of Django code copied into it. The goal for that code was simple: We wanted a way to use our Django middleware (for code sharing reasons) inside a Tornado process (since we wanted to use Tornado for our async events system). As part of the Django 2.2.x upgrade, I looked at upgrading this implementation to be based off modern Django, and it's definitely possible to do that: * Continue forking load_middleware to save response middleware. * Continue manually running the Django response middleware. * Continue working out a hack involving copying all of _get_response to change a couple lines allowing us our Tornado code to not actually return the Django HttpResponse so we can long-poll. The previous hack of returning None stopped being viable with the Django 2.2 MiddlewareMixin.__call__ implementation. But I decided to take this opportunity to look at trying to avoid copying material Django code, and there is a way to do it: * Replace RespondAsynchronously with a response.asynchronous attribute on the HttpResponse; this allows Django to run its normal plumbing happily in a way that should be stable over time, and then we proceed to discard the response inside the Tornado `get()` method to implement long-polling. (Better yet might be raising an exception?). This lets us eliminate maintaining a patched copy of _get_response. * Removing the @asynchronous decorator, which didn't add anything now that we only have one API endpoint backend (with two frontend call points) that could call into this. Combined with the last bullet, this lets us remove a significant hack from our never_cache_responses function. * Calling the normal Django `get_response` method from zulip_finish after creating a duplicate request to process, rather than writing totally custom code to do that. This lets us eliminate maintaining a patched copy of Django's load_middleware. * Adding detailed comments explaining how this is supposed to work, what problems we encounter, and how we solve various problems, which is critical to being able to modify this code in the future. A key advantage of these changes is that the exact same code should work on Django 1.11, Django 2.2, and Django 3.x, because we're no longer copying large blocks of core Django code and thus should be much less vulnerable to refactors. There may be a modest performance downside, in that we now run both request and response middleware twice when longpolling (once for the request we discard). We may be able to avoid the expensive part of it, Zulip's own request/response middleware, with a bit of additional custom code to save work for requests where we're planning to discard the response. Profiling will be important to understanding what's worth doing here.
2020-02-06 22:09:10 +01:00
# Tell Django that we're done processing this request on
# the Django side; this triggers cleanup work like
# resetting the urlconf and any cache/database
# connections.
await sync_to_async(response.close, thread_sensitive=True)()
@override
async def head(self, *args: Any, **kwargs: Any) -> None:
await self.get(*args, **kwargs)
@override
async def post(self, *args: Any, **kwargs: Any) -> None:
await self.get(*args, **kwargs)
@override
async def delete(self, *args: Any, **kwargs: Any) -> None:
await self.get(*args, **kwargs)
@override
def on_connection_close(self) -> None:
tornado: Rewrite Django integration to duplicate less code. Since essentially the first use of Tornado in Zulip, we've been maintaining our Tornado+Django system, AsyncDjangoHandler, with several hundred lines of Django code copied into it. The goal for that code was simple: We wanted a way to use our Django middleware (for code sharing reasons) inside a Tornado process (since we wanted to use Tornado for our async events system). As part of the Django 2.2.x upgrade, I looked at upgrading this implementation to be based off modern Django, and it's definitely possible to do that: * Continue forking load_middleware to save response middleware. * Continue manually running the Django response middleware. * Continue working out a hack involving copying all of _get_response to change a couple lines allowing us our Tornado code to not actually return the Django HttpResponse so we can long-poll. The previous hack of returning None stopped being viable with the Django 2.2 MiddlewareMixin.__call__ implementation. But I decided to take this opportunity to look at trying to avoid copying material Django code, and there is a way to do it: * Replace RespondAsynchronously with a response.asynchronous attribute on the HttpResponse; this allows Django to run its normal plumbing happily in a way that should be stable over time, and then we proceed to discard the response inside the Tornado `get()` method to implement long-polling. (Better yet might be raising an exception?). This lets us eliminate maintaining a patched copy of _get_response. * Removing the @asynchronous decorator, which didn't add anything now that we only have one API endpoint backend (with two frontend call points) that could call into this. Combined with the last bullet, this lets us remove a significant hack from our never_cache_responses function. * Calling the normal Django `get_response` method from zulip_finish after creating a duplicate request to process, rather than writing totally custom code to do that. This lets us eliminate maintaining a patched copy of Django's load_middleware. * Adding detailed comments explaining how this is supposed to work, what problems we encounter, and how we solve various problems, which is critical to being able to modify this code in the future. A key advantage of these changes is that the exact same code should work on Django 1.11, Django 2.2, and Django 3.x, because we're no longer copying large blocks of core Django code and thus should be much less vulnerable to refactors. There may be a modest performance downside, in that we now run both request and response middleware twice when longpolling (once for the request we discard). We may be able to avoid the expensive part of it, Zulip's own request/response middleware, with a bit of additional custom code to save work for requests where we're planning to discard the response. Profiling will be important to understanding what's worth doing here.
2020-02-06 22:09:10 +01:00
# Register a Tornado handler that runs when client-side
# connections are closed to notify the events system.
#
# TODO: Theoretically, this code should run when you Ctrl-C
# curl to cause it to break a `GET /events` connection, but
# that seems to no longer run this code. Investigate what's up.
client_descriptor = get_descriptor_by_handler_id(self.handler_id)
if client_descriptor is not None:
client_descriptor.disconnect_handler(client_closed=True)
async def zulip_finish(self, result_dict: Dict[str, Any], old_request: HttpRequest) -> None:
tornado: Rewrite Django integration to duplicate less code. Since essentially the first use of Tornado in Zulip, we've been maintaining our Tornado+Django system, AsyncDjangoHandler, with several hundred lines of Django code copied into it. The goal for that code was simple: We wanted a way to use our Django middleware (for code sharing reasons) inside a Tornado process (since we wanted to use Tornado for our async events system). As part of the Django 2.2.x upgrade, I looked at upgrading this implementation to be based off modern Django, and it's definitely possible to do that: * Continue forking load_middleware to save response middleware. * Continue manually running the Django response middleware. * Continue working out a hack involving copying all of _get_response to change a couple lines allowing us our Tornado code to not actually return the Django HttpResponse so we can long-poll. The previous hack of returning None stopped being viable with the Django 2.2 MiddlewareMixin.__call__ implementation. But I decided to take this opportunity to look at trying to avoid copying material Django code, and there is a way to do it: * Replace RespondAsynchronously with a response.asynchronous attribute on the HttpResponse; this allows Django to run its normal plumbing happily in a way that should be stable over time, and then we proceed to discard the response inside the Tornado `get()` method to implement long-polling. (Better yet might be raising an exception?). This lets us eliminate maintaining a patched copy of _get_response. * Removing the @asynchronous decorator, which didn't add anything now that we only have one API endpoint backend (with two frontend call points) that could call into this. Combined with the last bullet, this lets us remove a significant hack from our never_cache_responses function. * Calling the normal Django `get_response` method from zulip_finish after creating a duplicate request to process, rather than writing totally custom code to do that. This lets us eliminate maintaining a patched copy of Django's load_middleware. * Adding detailed comments explaining how this is supposed to work, what problems we encounter, and how we solve various problems, which is critical to being able to modify this code in the future. A key advantage of these changes is that the exact same code should work on Django 1.11, Django 2.2, and Django 3.x, because we're no longer copying large blocks of core Django code and thus should be much less vulnerable to refactors. There may be a modest performance downside, in that we now run both request and response middleware twice when longpolling (once for the request we discard). We may be able to avoid the expensive part of it, Zulip's own request/response middleware, with a bit of additional custom code to save work for requests where we're planning to discard the response. Profiling will be important to understanding what's worth doing here.
2020-02-06 22:09:10 +01:00
# Function called when we want to break a long-polled
# get_events request and return a response to the client.
# Marshall the response data from result_dict.
if result_dict["result"] == "error":
self.set_status(400)
tornado: Rewrite Django integration to duplicate less code. Since essentially the first use of Tornado in Zulip, we've been maintaining our Tornado+Django system, AsyncDjangoHandler, with several hundred lines of Django code copied into it. The goal for that code was simple: We wanted a way to use our Django middleware (for code sharing reasons) inside a Tornado process (since we wanted to use Tornado for our async events system). As part of the Django 2.2.x upgrade, I looked at upgrading this implementation to be based off modern Django, and it's definitely possible to do that: * Continue forking load_middleware to save response middleware. * Continue manually running the Django response middleware. * Continue working out a hack involving copying all of _get_response to change a couple lines allowing us our Tornado code to not actually return the Django HttpResponse so we can long-poll. The previous hack of returning None stopped being viable with the Django 2.2 MiddlewareMixin.__call__ implementation. But I decided to take this opportunity to look at trying to avoid copying material Django code, and there is a way to do it: * Replace RespondAsynchronously with a response.asynchronous attribute on the HttpResponse; this allows Django to run its normal plumbing happily in a way that should be stable over time, and then we proceed to discard the response inside the Tornado `get()` method to implement long-polling. (Better yet might be raising an exception?). This lets us eliminate maintaining a patched copy of _get_response. * Removing the @asynchronous decorator, which didn't add anything now that we only have one API endpoint backend (with two frontend call points) that could call into this. Combined with the last bullet, this lets us remove a significant hack from our never_cache_responses function. * Calling the normal Django `get_response` method from zulip_finish after creating a duplicate request to process, rather than writing totally custom code to do that. This lets us eliminate maintaining a patched copy of Django's load_middleware. * Adding detailed comments explaining how this is supposed to work, what problems we encounter, and how we solve various problems, which is critical to being able to modify this code in the future. A key advantage of these changes is that the exact same code should work on Django 1.11, Django 2.2, and Django 3.x, because we're no longer copying large blocks of core Django code and thus should be much less vulnerable to refactors. There may be a modest performance downside, in that we now run both request and response middleware twice when longpolling (once for the request we discard). We may be able to avoid the expensive part of it, Zulip's own request/response middleware, with a bit of additional custom code to save work for requests where we're planning to discard the response. Profiling will be important to understanding what's worth doing here.
2020-02-06 22:09:10 +01:00
# The `result` dictionary contains the data we want to return
# to the client. We want to do so in a proper Tornado HTTP
# response after running the Django response middleware (which
# does things like log the request, add rate-limit headers,
# etc.). The Django middleware API expects to receive a fresh
# HttpRequest object, and so to minimize hacks, our strategy
# is to create a duplicate Django HttpRequest object, tagged
# to automatically return our data in its response, and call
# Django's main self.get_response() handler to generate an
# HttpResponse with all Django middleware run.
request = await self.convert_tornado_request_to_django_request()
tornado: Rewrite Django integration to duplicate less code. Since essentially the first use of Tornado in Zulip, we've been maintaining our Tornado+Django system, AsyncDjangoHandler, with several hundred lines of Django code copied into it. The goal for that code was simple: We wanted a way to use our Django middleware (for code sharing reasons) inside a Tornado process (since we wanted to use Tornado for our async events system). As part of the Django 2.2.x upgrade, I looked at upgrading this implementation to be based off modern Django, and it's definitely possible to do that: * Continue forking load_middleware to save response middleware. * Continue manually running the Django response middleware. * Continue working out a hack involving copying all of _get_response to change a couple lines allowing us our Tornado code to not actually return the Django HttpResponse so we can long-poll. The previous hack of returning None stopped being viable with the Django 2.2 MiddlewareMixin.__call__ implementation. But I decided to take this opportunity to look at trying to avoid copying material Django code, and there is a way to do it: * Replace RespondAsynchronously with a response.asynchronous attribute on the HttpResponse; this allows Django to run its normal plumbing happily in a way that should be stable over time, and then we proceed to discard the response inside the Tornado `get()` method to implement long-polling. (Better yet might be raising an exception?). This lets us eliminate maintaining a patched copy of _get_response. * Removing the @asynchronous decorator, which didn't add anything now that we only have one API endpoint backend (with two frontend call points) that could call into this. Combined with the last bullet, this lets us remove a significant hack from our never_cache_responses function. * Calling the normal Django `get_response` method from zulip_finish after creating a duplicate request to process, rather than writing totally custom code to do that. This lets us eliminate maintaining a patched copy of Django's load_middleware. * Adding detailed comments explaining how this is supposed to work, what problems we encounter, and how we solve various problems, which is critical to being able to modify this code in the future. A key advantage of these changes is that the exact same code should work on Django 1.11, Django 2.2, and Django 3.x, because we're no longer copying large blocks of core Django code and thus should be much less vulnerable to refactors. There may be a modest performance downside, in that we now run both request and response middleware twice when longpolling (once for the request we discard). We may be able to avoid the expensive part of it, Zulip's own request/response middleware, with a bit of additional custom code to save work for requests where we're planning to discard the response. Profiling will be important to understanding what's worth doing here.
2020-02-06 22:09:10 +01:00
# We import RequestNotes during runtime to avoid
# cyclic import
from zerver.lib.request import RequestNotes
request_notes = RequestNotes.get_notes(request)
old_request_notes = RequestNotes.get_notes(old_request)
tornado: Rewrite Django integration to duplicate less code. Since essentially the first use of Tornado in Zulip, we've been maintaining our Tornado+Django system, AsyncDjangoHandler, with several hundred lines of Django code copied into it. The goal for that code was simple: We wanted a way to use our Django middleware (for code sharing reasons) inside a Tornado process (since we wanted to use Tornado for our async events system). As part of the Django 2.2.x upgrade, I looked at upgrading this implementation to be based off modern Django, and it's definitely possible to do that: * Continue forking load_middleware to save response middleware. * Continue manually running the Django response middleware. * Continue working out a hack involving copying all of _get_response to change a couple lines allowing us our Tornado code to not actually return the Django HttpResponse so we can long-poll. The previous hack of returning None stopped being viable with the Django 2.2 MiddlewareMixin.__call__ implementation. But I decided to take this opportunity to look at trying to avoid copying material Django code, and there is a way to do it: * Replace RespondAsynchronously with a response.asynchronous attribute on the HttpResponse; this allows Django to run its normal plumbing happily in a way that should be stable over time, and then we proceed to discard the response inside the Tornado `get()` method to implement long-polling. (Better yet might be raising an exception?). This lets us eliminate maintaining a patched copy of _get_response. * Removing the @asynchronous decorator, which didn't add anything now that we only have one API endpoint backend (with two frontend call points) that could call into this. Combined with the last bullet, this lets us remove a significant hack from our never_cache_responses function. * Calling the normal Django `get_response` method from zulip_finish after creating a duplicate request to process, rather than writing totally custom code to do that. This lets us eliminate maintaining a patched copy of Django's load_middleware. * Adding detailed comments explaining how this is supposed to work, what problems we encounter, and how we solve various problems, which is critical to being able to modify this code in the future. A key advantage of these changes is that the exact same code should work on Django 1.11, Django 2.2, and Django 3.x, because we're no longer copying large blocks of core Django code and thus should be much less vulnerable to refactors. There may be a modest performance downside, in that we now run both request and response middleware twice when longpolling (once for the request we discard). We may be able to avoid the expensive part of it, Zulip's own request/response middleware, with a bit of additional custom code to save work for requests where we're planning to discard the response. Profiling will be important to understanding what's worth doing here.
2020-02-06 22:09:10 +01:00
# Add to this new HttpRequest logging data from the processing of
# the original request; we will need these for logging.
request_notes.log_data = old_request_notes.log_data
if request_notes.rate_limit is not None:
request_notes.rate_limit = old_request_notes.rate_limit
if request_notes.requester_for_logs is not None:
request_notes.requester_for_logs = old_request_notes.requester_for_logs
tornado: Rewrite Django integration to duplicate less code. Since essentially the first use of Tornado in Zulip, we've been maintaining our Tornado+Django system, AsyncDjangoHandler, with several hundred lines of Django code copied into it. The goal for that code was simple: We wanted a way to use our Django middleware (for code sharing reasons) inside a Tornado process (since we wanted to use Tornado for our async events system). As part of the Django 2.2.x upgrade, I looked at upgrading this implementation to be based off modern Django, and it's definitely possible to do that: * Continue forking load_middleware to save response middleware. * Continue manually running the Django response middleware. * Continue working out a hack involving copying all of _get_response to change a couple lines allowing us our Tornado code to not actually return the Django HttpResponse so we can long-poll. The previous hack of returning None stopped being viable with the Django 2.2 MiddlewareMixin.__call__ implementation. But I decided to take this opportunity to look at trying to avoid copying material Django code, and there is a way to do it: * Replace RespondAsynchronously with a response.asynchronous attribute on the HttpResponse; this allows Django to run its normal plumbing happily in a way that should be stable over time, and then we proceed to discard the response inside the Tornado `get()` method to implement long-polling. (Better yet might be raising an exception?). This lets us eliminate maintaining a patched copy of _get_response. * Removing the @asynchronous decorator, which didn't add anything now that we only have one API endpoint backend (with two frontend call points) that could call into this. Combined with the last bullet, this lets us remove a significant hack from our never_cache_responses function. * Calling the normal Django `get_response` method from zulip_finish after creating a duplicate request to process, rather than writing totally custom code to do that. This lets us eliminate maintaining a patched copy of Django's load_middleware. * Adding detailed comments explaining how this is supposed to work, what problems we encounter, and how we solve various problems, which is critical to being able to modify this code in the future. A key advantage of these changes is that the exact same code should work on Django 1.11, Django 2.2, and Django 3.x, because we're no longer copying large blocks of core Django code and thus should be much less vulnerable to refactors. There may be a modest performance downside, in that we now run both request and response middleware twice when longpolling (once for the request we discard). We may be able to avoid the expensive part of it, Zulip's own request/response middleware, with a bit of additional custom code to save work for requests where we're planning to discard the response. Profiling will be important to understanding what's worth doing here.
2020-02-06 22:09:10 +01:00
request.user = old_request.user
request_notes.client = old_request_notes.client
request_notes.client_name = old_request_notes.client_name
request_notes.client_version = old_request_notes.client_version
tornado: Rewrite Django integration to duplicate less code. Since essentially the first use of Tornado in Zulip, we've been maintaining our Tornado+Django system, AsyncDjangoHandler, with several hundred lines of Django code copied into it. The goal for that code was simple: We wanted a way to use our Django middleware (for code sharing reasons) inside a Tornado process (since we wanted to use Tornado for our async events system). As part of the Django 2.2.x upgrade, I looked at upgrading this implementation to be based off modern Django, and it's definitely possible to do that: * Continue forking load_middleware to save response middleware. * Continue manually running the Django response middleware. * Continue working out a hack involving copying all of _get_response to change a couple lines allowing us our Tornado code to not actually return the Django HttpResponse so we can long-poll. The previous hack of returning None stopped being viable with the Django 2.2 MiddlewareMixin.__call__ implementation. But I decided to take this opportunity to look at trying to avoid copying material Django code, and there is a way to do it: * Replace RespondAsynchronously with a response.asynchronous attribute on the HttpResponse; this allows Django to run its normal plumbing happily in a way that should be stable over time, and then we proceed to discard the response inside the Tornado `get()` method to implement long-polling. (Better yet might be raising an exception?). This lets us eliminate maintaining a patched copy of _get_response. * Removing the @asynchronous decorator, which didn't add anything now that we only have one API endpoint backend (with two frontend call points) that could call into this. Combined with the last bullet, this lets us remove a significant hack from our never_cache_responses function. * Calling the normal Django `get_response` method from zulip_finish after creating a duplicate request to process, rather than writing totally custom code to do that. This lets us eliminate maintaining a patched copy of Django's load_middleware. * Adding detailed comments explaining how this is supposed to work, what problems we encounter, and how we solve various problems, which is critical to being able to modify this code in the future. A key advantage of these changes is that the exact same code should work on Django 1.11, Django 2.2, and Django 3.x, because we're no longer copying large blocks of core Django code and thus should be much less vulnerable to refactors. There may be a modest performance downside, in that we now run both request and response middleware twice when longpolling (once for the request we discard). We may be able to avoid the expensive part of it, Zulip's own request/response middleware, with a bit of additional custom code to save work for requests where we're planning to discard the response. Profiling will be important to understanding what's worth doing here.
2020-02-06 22:09:10 +01:00
# The saved_response attribute, if present, causes
# rest_dispatch to return the response immediately before
# doing any work. This arrangement allows Django's full
# request/middleware system to run unmodified while avoiding
# running expensive things like Zulip's authentication code a
# second time.
request_notes.saved_response = json_response(
res_type=result_dict["result"], data=result_dict, status=self.get_status()
)
tornado: Rewrite Django integration to duplicate less code. Since essentially the first use of Tornado in Zulip, we've been maintaining our Tornado+Django system, AsyncDjangoHandler, with several hundred lines of Django code copied into it. The goal for that code was simple: We wanted a way to use our Django middleware (for code sharing reasons) inside a Tornado process (since we wanted to use Tornado for our async events system). As part of the Django 2.2.x upgrade, I looked at upgrading this implementation to be based off modern Django, and it's definitely possible to do that: * Continue forking load_middleware to save response middleware. * Continue manually running the Django response middleware. * Continue working out a hack involving copying all of _get_response to change a couple lines allowing us our Tornado code to not actually return the Django HttpResponse so we can long-poll. The previous hack of returning None stopped being viable with the Django 2.2 MiddlewareMixin.__call__ implementation. But I decided to take this opportunity to look at trying to avoid copying material Django code, and there is a way to do it: * Replace RespondAsynchronously with a response.asynchronous attribute on the HttpResponse; this allows Django to run its normal plumbing happily in a way that should be stable over time, and then we proceed to discard the response inside the Tornado `get()` method to implement long-polling. (Better yet might be raising an exception?). This lets us eliminate maintaining a patched copy of _get_response. * Removing the @asynchronous decorator, which didn't add anything now that we only have one API endpoint backend (with two frontend call points) that could call into this. Combined with the last bullet, this lets us remove a significant hack from our never_cache_responses function. * Calling the normal Django `get_response` method from zulip_finish after creating a duplicate request to process, rather than writing totally custom code to do that. This lets us eliminate maintaining a patched copy of Django's load_middleware. * Adding detailed comments explaining how this is supposed to work, what problems we encounter, and how we solve various problems, which is critical to being able to modify this code in the future. A key advantage of these changes is that the exact same code should work on Django 1.11, Django 2.2, and Django 3.x, because we're no longer copying large blocks of core Django code and thus should be much less vulnerable to refactors. There may be a modest performance downside, in that we now run both request and response middleware twice when longpolling (once for the request we discard). We may be able to avoid the expensive part of it, Zulip's own request/response middleware, with a bit of additional custom code to save work for requests where we're planning to discard the response. Profiling will be important to understanding what's worth doing here.
2020-02-06 22:09:10 +01:00
response = await sync_to_async(
lambda: self.django_handler.get_response(request), thread_sensitive=True
)()
tornado: Rewrite Django integration to duplicate less code. Since essentially the first use of Tornado in Zulip, we've been maintaining our Tornado+Django system, AsyncDjangoHandler, with several hundred lines of Django code copied into it. The goal for that code was simple: We wanted a way to use our Django middleware (for code sharing reasons) inside a Tornado process (since we wanted to use Tornado for our async events system). As part of the Django 2.2.x upgrade, I looked at upgrading this implementation to be based off modern Django, and it's definitely possible to do that: * Continue forking load_middleware to save response middleware. * Continue manually running the Django response middleware. * Continue working out a hack involving copying all of _get_response to change a couple lines allowing us our Tornado code to not actually return the Django HttpResponse so we can long-poll. The previous hack of returning None stopped being viable with the Django 2.2 MiddlewareMixin.__call__ implementation. But I decided to take this opportunity to look at trying to avoid copying material Django code, and there is a way to do it: * Replace RespondAsynchronously with a response.asynchronous attribute on the HttpResponse; this allows Django to run its normal plumbing happily in a way that should be stable over time, and then we proceed to discard the response inside the Tornado `get()` method to implement long-polling. (Better yet might be raising an exception?). This lets us eliminate maintaining a patched copy of _get_response. * Removing the @asynchronous decorator, which didn't add anything now that we only have one API endpoint backend (with two frontend call points) that could call into this. Combined with the last bullet, this lets us remove a significant hack from our never_cache_responses function. * Calling the normal Django `get_response` method from zulip_finish after creating a duplicate request to process, rather than writing totally custom code to do that. This lets us eliminate maintaining a patched copy of Django's load_middleware. * Adding detailed comments explaining how this is supposed to work, what problems we encounter, and how we solve various problems, which is critical to being able to modify this code in the future. A key advantage of these changes is that the exact same code should work on Django 1.11, Django 2.2, and Django 3.x, because we're no longer copying large blocks of core Django code and thus should be much less vulnerable to refactors. There may be a modest performance downside, in that we now run both request and response middleware twice when longpolling (once for the request we discard). We may be able to avoid the expensive part of it, Zulip's own request/response middleware, with a bit of additional custom code to save work for requests where we're planning to discard the response. Profiling will be important to understanding what's worth doing here.
2020-02-06 22:09:10 +01:00
try:
# Explicitly mark requests as varying by cookie, since the
# middleware will not have seen a session access
patch_vary_headers(response, ("Cookie",))
assert isinstance(response, HttpResponse)
await self.write_django_response_as_tornado_response(response)
tornado: Rewrite Django integration to duplicate less code. Since essentially the first use of Tornado in Zulip, we've been maintaining our Tornado+Django system, AsyncDjangoHandler, with several hundred lines of Django code copied into it. The goal for that code was simple: We wanted a way to use our Django middleware (for code sharing reasons) inside a Tornado process (since we wanted to use Tornado for our async events system). As part of the Django 2.2.x upgrade, I looked at upgrading this implementation to be based off modern Django, and it's definitely possible to do that: * Continue forking load_middleware to save response middleware. * Continue manually running the Django response middleware. * Continue working out a hack involving copying all of _get_response to change a couple lines allowing us our Tornado code to not actually return the Django HttpResponse so we can long-poll. The previous hack of returning None stopped being viable with the Django 2.2 MiddlewareMixin.__call__ implementation. But I decided to take this opportunity to look at trying to avoid copying material Django code, and there is a way to do it: * Replace RespondAsynchronously with a response.asynchronous attribute on the HttpResponse; this allows Django to run its normal plumbing happily in a way that should be stable over time, and then we proceed to discard the response inside the Tornado `get()` method to implement long-polling. (Better yet might be raising an exception?). This lets us eliminate maintaining a patched copy of _get_response. * Removing the @asynchronous decorator, which didn't add anything now that we only have one API endpoint backend (with two frontend call points) that could call into this. Combined with the last bullet, this lets us remove a significant hack from our never_cache_responses function. * Calling the normal Django `get_response` method from zulip_finish after creating a duplicate request to process, rather than writing totally custom code to do that. This lets us eliminate maintaining a patched copy of Django's load_middleware. * Adding detailed comments explaining how this is supposed to work, what problems we encounter, and how we solve various problems, which is critical to being able to modify this code in the future. A key advantage of these changes is that the exact same code should work on Django 1.11, Django 2.2, and Django 3.x, because we're no longer copying large blocks of core Django code and thus should be much less vulnerable to refactors. There may be a modest performance downside, in that we now run both request and response middleware twice when longpolling (once for the request we discard). We may be able to avoid the expensive part of it, Zulip's own request/response middleware, with a bit of additional custom code to save work for requests where we're planning to discard the response. Profiling will be important to understanding what's worth doing here.
2020-02-06 22:09:10 +01:00
finally:
# Tell Django we're done processing this request
await sync_to_async(response.close, thread_sensitive=True)()