zulip/zerver/lib/validator.py

157 lines
5.8 KiB
Python
Raw Normal View History

'''
This module sets up a scheme for validating that arbitrary Python
objects are correctly typed. It is totally decoupled from Django,
composable, easily wrapped, and easily extended.
A validator takes two parameters--var_name and val--and returns an
error if val is not the correct type. The var_name parameter is used
to format error messages. Validators return None when there are no errors.
Example primitive validators are check_string, check_int, and check_bool.
Compound validators are created by check_list and check_dict. Note that
those functions aren't directly called for validation; instead, those
functions are called to return other functions that adhere to the validator
contract. This is similar to how Python decorators are often parameterized.
The contract for check_list and check_dict is that they get passed in other
validators to apply to their items. This allows you to build up validators
for arbitrarily complex validators. See ValidatorTestCase for example usage.
A simple example of composition is this:
2016-05-31 15:58:35 +02:00
check_list(check_string)('my_list', ['a', 'b', 'c']) is None
To extend this concept, it's simply a matter of writing your own validator
for any particular type of object.
'''
from django.utils.translation import ugettext as _
from django.core.exceptions import ValidationError
from django.core.validators import validate_email, URLValidator
from typing import Callable, Iterable, Optional, Tuple, TypeVar, Text
from zerver.lib.request import JsonableError
Validator = Callable[[str, object], Optional[str]]
def check_string(var_name: str, val: object) -> Optional[str]:
2017-09-27 10:06:17 +02:00
if not isinstance(val, str):
return _('%s is not a string') % (var_name,)
return None
def check_short_string(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, str):
return _('%s is not a string') % (var_name,)
max_length = 200
if len(val) >= max_length:
return _("{var_name} is longer than {max_length}.".format(
var_name=var_name, max_length=max_length))
return None
def check_int(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, int):
return _('%s is not an integer') % (var_name,)
return None
def check_float(var_name: str, val: object) -> Optional[str]:
2017-03-24 05:23:41 +01:00
if not isinstance(val, float):
return _('%s is not a float') % (var_name,)
return None
def check_bool(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, bool):
return _('%s is not a boolean') % (var_name,)
return None
def check_none_or(sub_validator: Validator) -> Validator:
def f(var_name: str, val: object) -> Optional[str]:
if val is None:
return None
else:
return sub_validator(var_name, val)
return f
def check_list(sub_validator: Optional[Validator], length: Optional[int]=None) -> Validator:
def f(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, list):
return _('%s is not a list') % (var_name,)
if length is not None and length != len(val):
return (_('%(container)s should have exactly %(length)s items') %
{'container': var_name, 'length': length})
if sub_validator:
for i, item in enumerate(val):
vname = '%s[%d]' % (var_name, i)
error = sub_validator(vname, item)
if error:
return error
return None
return f
def check_dict(required_keys: Iterable[Tuple[str, Validator]],
_allow_only_listed_keys: bool=False) -> Validator:
def f(var_name: str, val: object) -> Optional[str]:
if not isinstance(val, dict):
return _('%s is not a dict') % (var_name,)
for k, sub_validator in required_keys:
if k not in val:
return (_('%(key_name)s key is missing from %(var_name)s') %
{'key_name': k, 'var_name': var_name})
vname = '%s["%s"]' % (var_name, k)
error = sub_validator(vname, val[k])
if error:
return error
if _allow_only_listed_keys:
delta_keys = set(val.keys()) - set(x[0] for x in required_keys)
if len(delta_keys) != 0:
return _("Unexpected arguments: %s" % (", ".join(list(delta_keys))))
return None
return f
def check_dict_only(required_keys: Iterable[Tuple[str, Validator]]) -> Validator:
return check_dict(required_keys, _allow_only_listed_keys=True)
def check_variable_type(allowed_type_funcs: Iterable[Validator]) -> Validator:
"""
Use this validator if an argument is of a variable type (e.g. processing
properties that might be strings or booleans).
`allowed_type_funcs`: the check_* validator functions for the possible data
types for this variable.
"""
def enumerated_type_check(var_name: str, val: object) -> Optional[str]:
for func in allowed_type_funcs:
if not func(var_name, val):
return None
return _('%s is not an allowed_type') % (var_name,)
return enumerated_type_check
def equals(expected_val: object) -> Validator:
def f(var_name: str, val: object) -> Optional[str]:
if val != expected_val:
return (_('%(variable)s != %(expected_value)s (%(value)s is wrong)') %
{'variable': var_name,
'expected_value': expected_val,
'value': val})
return None
return f
def validate_login_email(email: Text) -> None:
try:
validate_email(email)
except ValidationError as err:
raise JsonableError(str(err.message))
def check_url(var_name: str, val: Text) -> None:
validate = URLValidator()
try:
validate(val)
except ValidationError as err:
raise JsonableError(str(err.message))