klipper-dgus/klippy/extruder.py

232 lines
10 KiB
Python

# Code for handling printer nozzle extruders
#
# Copyright (C) 2016 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math, logging
import stepper, heater, homing
EXTRUDE_DIFF_IGNORE = 1.02
class PrinterExtruder:
def __init__(self, printer, config):
self.config = config
self.heater = heater.PrinterHeater(printer, config)
self.stepper = stepper.PrinterStepper(printer, config, 'extruder')
self.nozzle_diameter = config.getfloat('nozzle_diameter')
filament_diameter = config.getfloat('filament_diameter')
filament_area = math.pi * (filament_diameter * .5)**2
max_cross_section = config.getfloat(
'max_extrude_cross_section', 4. * self.nozzle_diameter**2)
self.max_extrude_ratio = max_cross_section / filament_area
self.max_e_dist = config.getfloat('max_extrude_only_distance', 50.)
self.max_e_velocity = self.max_e_accel = None
self.pressure_advance = config.getfloat('pressure_advance', 0.)
self.pressure_advance_lookahead_time = 0.
if self.pressure_advance:
self.pressure_advance_lookahead_time = config.getfloat(
'pressure_advance_lookahead_time', 0.010)
self.need_motor_enable = True
self.extrude_pos = 0.
def set_max_jerk(self, max_xy_halt_velocity, max_velocity, max_accel):
self.max_e_velocity = self.config.getfloat(
'max_extrude_only_velocity', max_velocity * self.max_extrude_ratio)
self.max_e_accel = self.config.getfloat(
'max_extrude_only_accel', max_accel * self.max_extrude_ratio)
self.stepper.set_max_jerk(9999999.9, 9999999.9)
def motor_off(self, move_time):
self.stepper.motor_enable(move_time, 0)
self.need_motor_enable = True
def check_move(self, move):
move.extrude_r = move.axes_d[3] / move.move_d
move.extrude_max_corner_v = 0.
if not self.heater.can_extrude:
raise homing.EndstopMoveError(
move.end_pos, "Extrude below minimum temp")
if not move.is_kinematic_move:
# Extrude only move - limit accel and velocity
if move.axes_d[3] > self.max_e_dist:
raise homing.EndstopMoveError(
move.end_pos, "Extrude only move too long")
move.limit_speed(self.max_e_velocity, self.max_e_accel)
elif (move.extrude_r > self.max_extrude_ratio
and move.axes_d[3] > self.nozzle_diameter*self.max_extrude_ratio):
logging.debug("Overextrude: %s vs %s" % (
move.extrude_r, self.max_extrude_ratio))
raise homing.EndstopMoveError(
move.end_pos, "Move exceeds maximum extrusion cross section")
def calc_junction(self, prev_move, move):
extrude = move.axes_d[3]
prev_extrude = prev_move.axes_d[3]
if extrude or prev_extrude:
if not extrude or not prev_extrude:
# Extrude move to non-extrude move - disable lookahead
return 0.
if ((move.extrude_r > prev_move.extrude_r * EXTRUDE_DIFF_IGNORE
or prev_move.extrude_r > move.extrude_r * EXTRUDE_DIFF_IGNORE)
and abs(move.move_d * prev_move.extrude_r - extrude) >= .001):
# Extrude ratio between moves is too different
return 0.
move.extrude_r = prev_move.extrude_r
return move.max_cruise_v2
def lookahead(self, moves, flush_count, lazy):
lookahead_t = self.pressure_advance_lookahead_time
if not lookahead_t:
return flush_count
# Calculate max_corner_v - the speed the head will accelerate
# to after cornering.
for i in range(flush_count):
move = moves[i]
if not move.decel_t:
continue
cruise_v = move.cruise_v
max_corner_v = 0.
sum_t = lookahead_t
for j in range(i+1, flush_count):
fmove = moves[j]
if not fmove.max_start_v2:
break
if fmove.cruise_v > max_corner_v:
if (not max_corner_v
and not fmove.accel_t and not fmove.cruise_t):
# Start timing after any full decel moves
continue
if sum_t >= fmove.accel_t:
max_corner_v = fmove.cruise_v
else:
max_corner_v = max(
max_corner_v, fmove.start_v + fmove.accel * sum_t)
if max_corner_v >= cruise_v:
break
sum_t -= fmove.accel_t + fmove.cruise_t + fmove.decel_t
if sum_t <= 0.:
break
else:
if lazy:
return i
move.extrude_max_corner_v = max_corner_v
return flush_count
def move(self, move_time, move):
if self.need_motor_enable:
self.stepper.motor_enable(move_time, 1)
self.need_motor_enable = False
axis_d = move.axes_d[3]
extrude_r = abs(axis_d) / move.move_d
inv_accel = 1. / (move.accel * extrude_r)
start_v = move.start_v * extrude_r
cruise_v = move.cruise_v * extrude_r
end_v = move.end_v * extrude_r
accel_t, cruise_t, decel_t = move.accel_t, move.cruise_t, move.decel_t
accel_d = move.accel_r * axis_d
cruise_d = move.cruise_r * axis_d
decel_d = move.decel_r * axis_d
retract_t = retract_d = retract_v = 0.
decel_v = cruise_v
# Update for pressure advance
start_pos = self.extrude_pos
if (axis_d >= 0. and (move.axes_d[0] or move.axes_d[1])
and self.pressure_advance):
# Increase accel_d and start_v when accelerating
pressure_advance = self.pressure_advance * move.extrude_r
prev_pressure_d = start_pos - move.start_pos[3]
if accel_d:
npd = move.cruise_v * pressure_advance
extra_accel_d = npd - prev_pressure_d
if extra_accel_d > 0.:
accel_d += extra_accel_d
start_v += extra_accel_d / accel_t
prev_pressure_d += extra_accel_d
# Update decel and retract parameters when decelerating
emcv = move.extrude_max_corner_v
if decel_d and emcv < move.cruise_v:
npd = max(emcv, move.end_v) * pressure_advance
extra_decel_d = prev_pressure_d - npd
if extra_decel_d > 0.:
extra_decel_v = extra_decel_d / decel_t
decel_v -= extra_decel_v
end_v -= extra_decel_v
if decel_v <= 0.:
# The entire decel phase is replaced with retraction
retract_t = decel_t
retract_d = -(end_v + decel_v) * 0.5 * decel_t
retract_v = -decel_v
decel_t = decel_d = 0.
elif end_v < 0.:
# Split decel phase into decel and retraction
retract_t = -end_v * inv_accel
retract_d = -end_v * 0.5 * retract_t
decel_t -= retract_t
decel_d = decel_v * 0.5 * decel_t
else:
# There is still only a decel phase (no retraction)
decel_d -= extra_decel_d
# Prepare for steps
inv_step_dist = self.stepper.inv_step_dist
step_dist = self.stepper.step_dist
mcu_stepper = self.stepper.mcu_stepper
mcu_time = mcu_stepper.print_to_mcu_time(move_time)
step_pos = mcu_stepper.commanded_position
step_offset = step_pos - start_pos * inv_step_dist
# Acceleration steps
accel_multiplier = 2.0 * step_dist * inv_accel
if accel_d:
#t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
accel_time_offset = start_v * inv_accel
accel_sqrt_offset = accel_time_offset**2
accel_steps = accel_d * inv_step_dist
count = mcu_stepper.step_sqrt(
mcu_time - accel_time_offset, accel_steps, step_offset
, accel_sqrt_offset, accel_multiplier)
step_offset += count - accel_steps
mcu_time += accel_t
# Cruising steps
if cruise_d:
#t = pos/cruise_v
cruise_multiplier = step_dist / cruise_v
cruise_steps = cruise_d * inv_step_dist
count = mcu_stepper.step_factor(
mcu_time, cruise_steps, step_offset, cruise_multiplier)
step_offset += count - cruise_steps
mcu_time += cruise_t
# Deceleration steps
if decel_d:
#t = cruise_v/accel - sqrt((cruise_v/accel)**2 - 2*pos/accel)
decel_time_offset = decel_v * inv_accel
decel_sqrt_offset = decel_time_offset**2
decel_steps = decel_d * inv_step_dist
count = mcu_stepper.step_sqrt(
mcu_time + decel_time_offset, decel_steps, step_offset
, decel_sqrt_offset, -accel_multiplier)
step_offset += count - decel_steps
mcu_time += decel_t
# Retraction steps
if retract_d:
#t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
accel_time_offset = retract_v * inv_accel
accel_sqrt_offset = accel_time_offset**2
accel_steps = -retract_d * inv_step_dist
count = mcu_stepper.step_sqrt(
mcu_time - accel_time_offset, accel_steps, step_offset
, accel_sqrt_offset, accel_multiplier)
self.extrude_pos = start_pos + accel_d + cruise_d + decel_d - retract_d
# Dummy extruder class used when a printer has no extruder at all
class DummyExtruder:
def set_max_jerk(self, max_xy_halt_velocity, max_velocity, max_accel):
pass
def motor_off(self, move_time):
pass
def check_move(self, move):
raise homing.EndstopMoveError(
move.end_pos, "Extrude when no extruder present")
def calc_junction(self, prev_move, move):
return move.max_cruise_v2
def lookahead(self, moves, flush_count, lazy):
return flush_count