klipper-dgus/klippy/cartesian.py

253 lines
11 KiB
Python

# Code for handling cartesian (standard x, y, z planes) moves
#
# Copyright (C) 2016 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math, logging, time
import lookahead, stepper, homing
# Common suffixes: _d is distance (in mm), _v is velocity (in
# mm/second), _t is time (in seconds), _r is ratio (scalar between
# 0.0 and 1.0)
StepList = (0, 1, 2, 3)
class Move:
def __init__(self, kin, relsteps, speed):
self.kin = kin
self.relsteps = relsteps
self.junction_max = self.junction_start_max = self.junction_delta = 0.
# Calculate requested distance to travel (in mm)
steppers = self.kin.steppers
absrelsteps = [abs(relsteps[i]) for i in StepList]
stepper_d = [absrelsteps[i] * steppers[i].step_dist
for i in StepList]
self.move_d = math.sqrt(sum([d*d for d in stepper_d[:3]]))
if not self.move_d:
self.move_d = stepper_d[3]
if not self.move_d:
return
# Limit velocity to max for each stepper
velocity_factor = min([steppers[i].max_step_velocity / absrelsteps[i]
for i in StepList if absrelsteps[i]])
move_v = min(speed, velocity_factor * self.move_d)
self.junction_max = move_v**2
# Find max acceleration factor
accel_factor = min([steppers[i].max_step_accel / absrelsteps[i]
for i in StepList if absrelsteps[i]])
accel = min(self.kin.max_accel, accel_factor * self.move_d)
self.junction_delta = 2.0 * self.move_d * accel
def calc_junction(self, prev_move):
# Find max start junction velocity using approximated
# centripetal velocity as described at:
# https://onehossshay.wordpress.com/2011/09/24/improving_grbl_cornering_algorithm/
if not prev_move.move_d or self.relsteps[2] or prev_move.relsteps[2]:
return
steppers = self.kin.steppers
junction_cos_theta = -sum([
self.relsteps[i] * prev_move.relsteps[i] * steppers[i].step_dist**2
for i in range(2)]) / (self.move_d * prev_move.move_d)
if junction_cos_theta > 0.999999:
return
junction_cos_theta = max(junction_cos_theta, -0.999999)
sin_theta_d2 = math.sqrt(0.5*(1.0-junction_cos_theta));
R = self.kin.junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)
accel = self.junction_delta / (2.0 * self.move_d)
self.junction_start_max = min(
accel * R, self.junction_max, prev_move.junction_max)
def process(self, junction_start, junction_end):
# Determine accel, cruise, and decel portions of the move
junction_cruise = self.junction_max
inv_junction_delta = 1. / self.junction_delta
accel_r = (junction_cruise-junction_start) * inv_junction_delta
decel_r = (junction_cruise-junction_end) * inv_junction_delta
cruise_r = 1. - accel_r - decel_r
if cruise_r < 0.:
accel_r += 0.5 * cruise_r
decel_r = 1.0 - accel_r
cruise_r = 0.
junction_cruise = junction_start + accel_r*self.junction_delta
# Determine the move velocities and time spent in each portion
start_v = math.sqrt(junction_start)
cruise_v = math.sqrt(junction_cruise)
end_v = math.sqrt(junction_end)
inv_cruise_v = 1. / cruise_v
inv_accel = 2.0 * self.move_d * inv_junction_delta
accel_t = 2.0 * self.move_d * accel_r / (start_v+cruise_v)
cruise_t = self.move_d * cruise_r * inv_cruise_v
decel_t = 2.0 * self.move_d * decel_r / (end_v+cruise_v)
#logging.debug("Move: %s v=%.2f/%.2f/%.2f mt=%.3f st=%.3f %.3f %.3f" % (
# self.relsteps, start_v, cruise_v, end_v, move_t
# , next_move_time, accel_r, cruise_r))
# Calculate step times for the move
next_move_time = self.kin.get_next_move_time()
for i in StepList:
steps = self.relsteps[i]
if not steps:
continue
sdir = 0
if steps < 0:
sdir = 1
steps = -steps
clock_offset, clock_freq, so = self.kin.steppers[i].prep_move(
sdir, next_move_time)
step_dist = self.move_d / steps
step_offset = 0.5
# Acceleration steps
#t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
accel_clock_offset = start_v * inv_accel * clock_freq
accel_sqrt_offset = accel_clock_offset**2
accel_multiplier = 2.0 * step_dist * inv_accel * clock_freq**2
accel_steps = accel_r * steps
step_offset = so.step_sqrt(
accel_steps, step_offset, clock_offset - accel_clock_offset
, accel_sqrt_offset, accel_multiplier)
clock_offset += accel_t * clock_freq
# Cruising steps
#t = pos/cruise_v
cruise_multiplier = step_dist * inv_cruise_v * clock_freq
cruise_steps = cruise_r * steps
step_offset = so.step_factor(
cruise_steps, step_offset, clock_offset, cruise_multiplier)
clock_offset += cruise_t * clock_freq
# Deceleration steps
#t = cruise_v/accel - sqrt((cruise_v/accel)**2 - 2*pos/accel)
decel_clock_offset = cruise_v * inv_accel * clock_freq
decel_sqrt_offset = decel_clock_offset**2
decel_steps = decel_r * steps
so.step_sqrt(
decel_steps, step_offset, clock_offset + decel_clock_offset
, decel_sqrt_offset, -accel_multiplier)
self.kin.update_move_time(accel_t + cruise_t + decel_t)
STALL_TIME = 0.100
class CartKinematics:
def __init__(self, printer, config):
self.printer = printer
self.reactor = printer.reactor
steppers = ['stepper_x', 'stepper_y', 'stepper_z', 'stepper_e']
self.steppers = [stepper.PrinterStepper(printer, config.getsection(n))
for n in steppers]
self.max_accel = min(s.max_step_accel*s.step_dist
for s in self.steppers[:2]) # XXX
dummy_move = Move(self, [0]*len(self.steppers), 0.)
dummy_move.junction_max = 0.
self.junction_deviation = config.getfloat('junction_deviation', 0.02)
self.move_queue = lookahead.MoveQueue(dummy_move)
self.pos = [0, 0, 0, 0]
# Print time tracking
self.buffer_time_high = config.getfloat('buffer_time_high', 5.000)
self.buffer_time_low = config.getfloat('buffer_time_low', 0.150)
self.move_flush_time = config.getfloat('move_flush_time', 0.050)
self.motor_off_delay = config.getfloat('motor_off_time', 60.000)
self.print_time = 0.
self.print_time_stall = 0
self.motor_off_time = self.reactor.NEVER
self.flush_timer = self.reactor.register_timer(self.flush_handler)
def build_config(self):
for stepper in self.steppers:
stepper.build_config()
# Print time tracking
def update_move_time(self, movetime):
self.print_time += movetime
flush_to_time = self.print_time - self.move_flush_time
self.printer.mcu.flush_moves(flush_to_time)
def get_next_move_time(self):
if not self.print_time:
self.print_time = self.buffer_time_low + STALL_TIME
curtime = time.time()
self.printer.mcu.set_print_start_time(curtime)
self.reactor.update_timer(self.flush_timer, self.reactor.NOW)
return self.print_time
def get_last_move_time(self):
self.move_queue.flush()
return self.get_next_move_time()
def reset_motor_off_time(self, eventtime):
self.motor_off_time = eventtime + self.motor_off_delay
def reset_print_time(self):
self.move_queue.flush()
self.printer.mcu.flush_moves(self.print_time)
self.print_time = 0.
self.reset_motor_off_time(time.time())
self.reactor.update_timer(self.flush_timer, self.motor_off_time)
def check_busy(self, eventtime):
if not self.print_time:
# XXX - find better way to flush initial move_queue items
if self.move_queue.queue:
self.reactor.update_timer(self.flush_timer, eventtime + 0.100)
return False
buffer_time = self.printer.mcu.get_print_buffer_time(
eventtime, self.print_time)
return buffer_time > self.buffer_time_high
def flush_handler(self, eventtime):
if not self.print_time:
self.move_queue.flush()
if not self.print_time:
if eventtime >= self.motor_off_time:
self.motor_off()
self.reset_print_time()
self.motor_off_time = self.reactor.NEVER
return self.motor_off_time
print_time = self.print_time
buffer_time = self.printer.mcu.get_print_buffer_time(
eventtime, print_time)
if buffer_time > self.buffer_time_low:
return eventtime + buffer_time - self.buffer_time_low
self.move_queue.flush()
if print_time != self.print_time:
self.print_time_stall += 1
self.dwell(self.buffer_time_low + STALL_TIME)
return self.reactor.NOW
self.reset_print_time()
return self.motor_off_time
def stats(self, eventtime):
buffer_time = 0.
if self.print_time:
buffer_time = self.printer.mcu.get_print_buffer_time(
eventtime, self.print_time)
return "print_time=%.3f buffer_time=%.3f print_time_stall=%d" % (
self.print_time, buffer_time, self.print_time_stall)
# Movement commands
def get_position(self):
return [self.pos[i] * self.steppers[i].step_dist
for i in StepList]
def set_position(self, newpos):
self.pos = [int(newpos[i]*self.steppers[i].inv_step_dist + 0.5)
for i in StepList]
def move(self, newpos, speed, sloppy=False):
# Round to closest step position
newpos = [int(newpos[i]*self.steppers[i].inv_step_dist + 0.5)
for i in StepList]
relsteps = [newpos[i] - self.pos[i] for i in StepList]
self.pos = newpos
if relsteps == [0]*len(newpos):
# no move
return
#logging.debug("; dist %s @ %d\n" % (
# [newpos[i]*self.steppers[i].step_dist for i in StepList], speed))
# Create move and queue it
move = Move(self, relsteps, speed)
move.calc_junction(self.move_queue.prev_move())
self.move_queue.add_move(move)
def home(self, axis):
# Each axis is homed independently and in order
homing_state = homing.Homing(self, self.steppers)
for a in axis:
homing_state.plan_home(a)
return homing_state
def dwell(self, delay):
self.get_last_move_time()
self.update_move_time(delay)
def motor_off(self):
self.dwell(STALL_TIME)
last_move_time = self.get_last_move_time()
for stepper in self.steppers:
stepper.motor_enable(last_move_time, 0)
self.dwell(STALL_TIME)
logging.debug('; Max time of %f' % (last_move_time,))