klipper-dgus/klippy/extras/resonance_tester.py

321 lines
15 KiB
Python

# A utility class to test resonances of the printer
#
# Copyright (C) 2020 Dmitry Butyugin <dmbutyugin@google.com>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging, math, os, time
from . import shaper_calibrate
def _parse_probe_points(config):
points = config.get('probe_points').split('\n')
try:
points = [line.split(',', 2) for line in points if line.strip()]
return [[float(coord.strip()) for coord in p] for p in points]
except:
raise config.error("Unable to parse probe_points in %s" % (
config.get_name()))
class VibrationPulseTest:
def __init__(self, config):
printer = config.get_printer()
self.gcode = printer.lookup_object('gcode')
self.min_freq = config.getfloat('min_freq', 5., minval=1.)
# Defaults are such that max_freq * accel_per_hz == 10000 (max_accel)
self.max_freq = config.getfloat('max_freq', 10000. / 75.,
minval=self.min_freq, maxval=200.)
self.accel_per_hz = config.getfloat('accel_per_hz', 75., above=0.)
self.hz_per_sec = config.getfloat('hz_per_sec', 1.,
minval=0.1, maxval=2.)
self.probe_points = _parse_probe_points(config)
def get_supported_axes(self):
return ['x', 'y']
def get_start_test_points(self):
return self.probe_points
def prepare_test(self, toolhead, gcmd):
self.freq_start = gcmd.get_float("FREQ_START", self.min_freq, minval=1.)
self.freq_end = gcmd.get_float("FREQ_END", self.max_freq,
minval=self.freq_start, maxval=200.)
self.hz_per_sec = gcmd.get_float("HZ_PER_SEC", self.hz_per_sec,
above=0., maxval=2.)
# Attempt to adjust maximum acceleration and acceleration to
# deceleration based on the maximum test frequency.
max_accel = self.freq_end * self.accel_per_hz
toolhead.cmd_SET_VELOCITY_LIMIT(self.gcode.create_gcode_command(
"SET_VELOCITY_LIMIT", "SET_VELOCITY_LIMIT",
{"ACCEL": max_accel, "ACCEL_TO_DECEL": max_accel}))
def run_test(self, toolhead, axis, gcmd):
X, Y, Z, E = toolhead.get_position()
if axis not in self.get_supported_axes():
raise gcmd.error("Test axis '%s' is not supported", axis)
vib_dir = (1, 0) if axis == 'x' else (0., 1.)
sign = 1.
freq = self.freq_start
gcmd.respond_info("Testing frequency %.0f Hz" % (freq,))
_, max_accel = toolhead.get_max_velocity()
while freq <= self.freq_end + 0.000001:
t_seg = .25 / freq
accel = min(self.accel_per_hz * freq, max_accel)
V = accel * t_seg
toolhead.cmd_M204(self.gcode.create_gcode_command(
"M204", "M204", {"S": accel}))
L = .5 * accel * t_seg**2
nX = X + sign * vib_dir[0] * L
nY = Y + sign * vib_dir[1] * L
toolhead.move([nX, nY, Z, E], V)
toolhead.move([X, Y, Z, E], V)
sign = -sign
old_freq = freq
freq += 2. * t_seg * self.hz_per_sec
if math.floor(freq) > math.floor(old_freq):
gcmd.respond_info("Testing frequency %.0f Hz" % (freq,))
class ResonanceTester:
def __init__(self, config):
self.printer = config.get_printer()
self.move_speed = config.getfloat('move_speed', 50., above=0.)
self.test = VibrationPulseTest(config)
if not config.get('accel_chip_x', None):
self.accel_chip_names = [('xy', config.get('accel_chip').strip())]
else:
self.accel_chip_names = [
('x', config.get('accel_chip_x').strip()),
('y', config.get('accel_chip_y').strip())]
if self.accel_chip_names[0][1] == self.accel_chip_names[1][1]:
self.accel_chip_names = [('xy', self.accel_chip_names[0][1])]
self.max_smoothing = config.getfloat('max_smoothing', None, minval=0.05)
self.gcode = self.printer.lookup_object('gcode')
self.gcode.register_command("MEASURE_AXES_NOISE",
self.cmd_MEASURE_AXES_NOISE)
self.gcode.register_command("TEST_RESONANCES",
self.cmd_TEST_RESONANCES)
self.gcode.register_command("SHAPER_CALIBRATE",
self.cmd_SHAPER_CALIBRATE)
self.printer.register_event_handler("klippy:connect", self.connect)
def connect(self):
self.accel_chips = [
(axis, self.printer.lookup_object(chip_name))
for axis, chip_name in self.accel_chip_names]
def cmd_TEST_RESONANCES(self, gcmd):
toolhead = self.printer.lookup_object('toolhead')
# Parse parameters
self.test.prepare_test(toolhead, gcmd)
if len(self.test.get_supported_axes()) > 1:
axis = gcmd.get("AXIS").lower()
else:
axis = gcmd.get("AXIS", self.test.get_supported_axes()[0]).lower()
if axis not in self.test.get_supported_axes():
raise gcmd.error("Unsupported axis '%s'" % (axis,))
outputs = gcmd.get("OUTPUT", "resonances").lower().split(',')
for output in outputs:
if output not in ['resonances', 'raw_data']:
raise gcmd.error("Unsupported output '%s', only 'resonances'"
" and 'raw_data' are supported" % (output,))
if not outputs:
raise gcmd.error("No output specified, at least one of 'resonances'"
" or 'raw_data' must be set in OUTPUT parameter")
name_suffix = gcmd.get("NAME", time.strftime("%Y%m%d_%H%M%S"))
if not self.is_valid_name_suffix(name_suffix):
raise gcmd.error("Invalid NAME parameter")
csv_output = 'resonances' in outputs
raw_output = 'raw_data' in outputs
# Setup calculation of resonances
if csv_output:
helper = shaper_calibrate.ShaperCalibrate(self.printer)
input_shaper = self.printer.lookup_object('input_shaper', None)
if input_shaper is not None and not gcmd.get_int('INPUT_SHAPING', 0):
input_shaper.disable_shaping()
gcmd.respond_info("Disabled [input_shaper] for resonance testing")
else:
input_shaper = None
currentPos = toolhead.get_position()
Z = currentPos[2]
E = currentPos[3]
calibration_points = self.test.get_start_test_points()
data = None
for point in calibration_points:
toolhead.manual_move(point, self.move_speed)
if len(calibration_points) > 1:
gcmd.respond_info(
"Probing point (%.3f, %.3f, %.3f)" % tuple(point))
toolhead.wait_moves()
toolhead.dwell(0.500)
gcmd.respond_info("Testing axis %s" % axis.upper())
for chip_axis, chip in self.accel_chips:
if axis in chip_axis or chip_axis in axis:
chip.start_measurements()
# Generate moves
self.test.run_test(toolhead, axis, gcmd)
raw_values = []
for chip_axis, chip in self.accel_chips:
if axis in chip_axis or chip_axis in axis:
results = chip.finish_measurements()
if raw_output:
raw_name = self.get_filename(
'raw_data', name_suffix, axis,
point if len(calibration_points) > 1 else None)
results.write_to_file(raw_name)
gcmd.respond_info(
"Writing raw accelerometer data to %s file" % (
raw_name,))
raw_values.append((chip_axis, results))
if not csv_output:
continue
for chip_axis, chip_values in raw_values:
gcmd.respond_info("%s-axis accelerometer stats: %s" % (
chip_axis, chip_values.get_stats(),))
if not chip_values:
raise gcmd.error(
"%s-axis accelerometer measured no data" % (
chip_axis,))
new_data = helper.process_accelerometer_data(chip_values)
data = data.join(new_data) if data else new_data
if csv_output:
csv_name = self.save_calibration_data('resonances', name_suffix,
helper, axis, data)
gcmd.respond_info(
"Resonances data written to %s file" % (csv_name,))
if input_shaper is not None:
input_shaper.enable_shaping()
gcmd.respond_info(
"Re-enabled [input_shaper] after resonance testing")
def cmd_SHAPER_CALIBRATE(self, gcmd):
toolhead = self.printer.lookup_object('toolhead')
# Parse parameters
self.test.prepare_test(toolhead, gcmd)
axis = gcmd.get("AXIS", None)
if not axis:
calibrate_axes = self.test.get_supported_axes()
elif axis.lower() not in self.test.get_supported_axes():
raise gcmd.error("Unsupported axis '%s'" % (axis,))
else:
calibrate_axes = [axis.lower()]
max_smoothing = gcmd.get_float(
"MAX_SMOOTHING", self.max_smoothing, minval=0.05)
name_suffix = gcmd.get("NAME", time.strftime("%Y%m%d_%H%M%S"))
if not self.is_valid_name_suffix(name_suffix):
raise gcmd.error("Invalid NAME parameter")
# Setup shaper calibration
helper = shaper_calibrate.ShaperCalibrate(self.printer)
input_shaper = self.printer.lookup_object('input_shaper', None)
if input_shaper is not None:
input_shaper.disable_shaping()
gcmd.respond_info("Disabled [input_shaper] for calibration")
currentPos = toolhead.get_position()
Z = currentPos[2]
E = currentPos[3]
calibration_data = {axis: None for axis in calibrate_axes}
calibration_points = self.test.get_start_test_points()
for point in calibration_points:
toolhead.manual_move(point, self.move_speed)
if len(calibration_points) > 1:
gcmd.respond_info(
"Probing point (%.3f, %.3f, %.3f)" % tuple(point))
for axis in calibrate_axes:
toolhead.wait_moves()
toolhead.dwell(0.500)
gcmd.respond_info("Testing axis %s" % axis.upper())
for chip_axis, chip in self.accel_chips:
if axis in chip_axis or chip_axis in axis:
chip.start_measurements()
# Generate moves
self.test.run_test(toolhead, axis, gcmd)
raw_values = [(chip_axis, chip.finish_measurements())
for chip_axis, chip in self.accel_chips
if axis in chip_axis or chip_axis in axis]
for chip_axis, chip_values in raw_values:
gcmd.respond_info("%s-axis accelerometer stats: %s" % (
chip_axis, chip_values.get_stats(),))
if not chip_values:
raise gcmd.error(
"%s-axis accelerometer measured no data" % (
chip_axis,))
new_data = helper.process_accelerometer_data(chip_values)
if calibration_data[axis] is None:
calibration_data[axis] = new_data
else:
calibration_data[axis].join(new_data)
configfile = self.printer.lookup_object('configfile')
for axis in calibrate_axes:
gcmd.respond_info(
"Calculating the best input shaper parameters for %s axis"
% (axis,))
calibration_data[axis].normalize_to_frequencies()
best_shaper, all_shapers = helper.find_best_shaper(
calibration_data[axis], max_smoothing, gcmd.respond_info)
gcmd.respond_info(
"Recommended shaper_type_%s = %s, shaper_freq_%s = %.1f Hz"
% (axis, best_shaper.name, axis, best_shaper.freq))
helper.save_params(configfile, axis,
best_shaper.name, best_shaper.freq)
csv_name = self.save_calibration_data(
'calibration_data', name_suffix, helper, axis,
calibration_data[axis], all_shapers)
gcmd.respond_info(
"Shaper calibration data written to %s file" % (csv_name,))
gcmd.respond_info(
"The SAVE_CONFIG command will update the printer config file\n"
"with these parameters and restart the printer.")
if input_shaper is not None:
input_shaper.enable_shaping()
gcmd.respond_info("Re-enabled [input_shaper] after calibration")
def cmd_MEASURE_AXES_NOISE(self, gcmd):
meas_time = gcmd.get_float("MEAS_TIME", 2.)
for _, chip in self.accel_chips:
chip.start_measurements()
self.printer.lookup_object('toolhead').dwell(meas_time)
raw_values = [(axis, chip.finish_measurements())
for axis, chip in self.accel_chips]
helper = shaper_calibrate.ShaperCalibrate(self.printer)
for axis, raw_data in raw_values:
data = helper.process_accelerometer_data(raw_data)
vx = data.psd_x.mean()
vy = data.psd_y.mean()
vz = data.psd_z.mean()
gcmd.respond_info("Axes noise for %s-axis accelerometer: "
"%.6f (x), %.6f (y), %.6f (z)" % (
axis, vx, vy, vz))
def is_valid_name_suffix(self, name_suffix):
return name_suffix.replace('-', '').replace('_', '').isalnum()
def get_filename(self, base, name_suffix, axis=None, point=None):
name = base
if axis:
name += '_' + axis
if point:
name += "_%.3f_%.3f_%.3f" % (point[0], point[1], point[2])
name += '_' + name_suffix
return os.path.join("/tmp", name + ".csv")
def save_calibration_data(self, base_name, name_suffix, shaper_calibrate,
axis, calibration_data, all_shapers=None):
output = self.get_filename(base_name, name_suffix, axis)
shaper_calibrate.save_calibration_data(output, calibration_data,
all_shapers)
return output
def load_config(config):
return ResonanceTester(config)