klipper-dgus/klippy/corexy.py

150 lines
6.6 KiB
Python

# Code for handling the kinematics of corexy robots
#
# Copyright (C) 2017-2018 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging, math
import stepper, homing, chelper
StepList = (0, 1, 2)
class CoreXYKinematics:
def __init__(self, toolhead, printer, config):
self.steppers = [
stepper.PrinterHomingStepper(
printer, config.getsection('stepper_x')),
stepper.PrinterHomingStepper(
printer, config.getsection('stepper_y')),
stepper.LookupMultiHomingStepper(
printer, config.getsection('stepper_z'))]
self.steppers[0].mcu_endstop.add_stepper(self.steppers[1].mcu_stepper)
self.steppers[1].mcu_endstop.add_stepper(self.steppers[0].mcu_stepper)
max_velocity, max_accel = toolhead.get_max_velocity()
self.max_z_velocity = config.getfloat(
'max_z_velocity', max_velocity, above=0., maxval=max_velocity)
self.max_z_accel = config.getfloat(
'max_z_accel', max_accel, above=0., maxval=max_accel)
self.need_motor_enable = True
self.limits = [(1.0, -1.0)] * 3
# Setup iterative solver
ffi_main, ffi_lib = chelper.get_ffi()
self.cmove = ffi_main.gc(ffi_lib.move_alloc(), ffi_lib.free)
self.move_fill = ffi_lib.move_fill
self.steppers[0].setup_itersolve(ffi_main.gc(
ffi_lib.corexy_stepper_alloc('+'), ffi_lib.free))
self.steppers[1].setup_itersolve(ffi_main.gc(
ffi_lib.corexy_stepper_alloc('-'), ffi_lib.free))
self.steppers[2].setup_cartesian_itersolve('z')
# Setup stepper max halt velocity
max_halt_velocity = toolhead.get_max_axis_halt()
max_xy_halt_velocity = max_halt_velocity * math.sqrt(2.)
self.steppers[0].set_max_jerk(max_xy_halt_velocity, max_accel)
self.steppers[1].set_max_jerk(max_xy_halt_velocity, max_accel)
self.steppers[2].set_max_jerk(
min(max_halt_velocity, self.max_z_velocity), self.max_z_accel)
def get_steppers(self, flags=""):
if flags == "Z":
return [self.steppers[2]]
return list(self.steppers)
def get_position(self):
pos = [s.mcu_stepper.get_commanded_position() for s in self.steppers]
return [0.5 * (pos[0] + pos[1]), 0.5 * (pos[0] - pos[1]), pos[2]]
def set_position(self, newpos, homing_axes):
pos = (newpos[0] + newpos[1], newpos[0] - newpos[1], newpos[2])
for i in StepList:
s = self.steppers[i]
s.set_position(pos[i])
if i in homing_axes:
self.limits[i] = (s.position_min, s.position_max)
def home(self, homing_state):
# Each axis is homed independently and in order
for axis in homing_state.get_axes():
s = self.steppers[axis]
# Determine moves
if s.homing_positive_dir:
pos = s.position_endstop - 1.5*(
s.position_endstop - s.position_min)
rpos = s.position_endstop - s.homing_retract_dist
r2pos = rpos - s.homing_retract_dist
else:
pos = s.position_endstop + 1.5*(
s.position_max - s.position_endstop)
rpos = s.position_endstop + s.homing_retract_dist
r2pos = rpos + s.homing_retract_dist
# Initial homing
homing_speed = s.homing_speed
if axis == 2:
homing_speed = min(homing_speed, self.max_z_velocity)
homepos = [None, None, None, None]
homepos[axis] = s.position_endstop
coord = [None, None, None, None]
coord[axis] = pos
homing_state.home(coord, homepos, s.get_endstops(), homing_speed)
# Retract
coord[axis] = rpos
homing_state.retract(coord, homing_speed)
# Home again
coord[axis] = r2pos
homing_state.home(coord, homepos, s.get_endstops(),
homing_speed/2.0, second_home=True)
if axis == 2:
# Support endstop phase detection on Z axis
coord[axis] = s.position_endstop + s.get_homed_offset()
homing_state.set_homed_position(coord)
def motor_off(self, print_time):
self.limits = [(1.0, -1.0)] * 3
for stepper in self.steppers:
stepper.motor_enable(print_time, 0)
self.need_motor_enable = True
def _check_motor_enable(self, print_time, move):
if move.axes_d[0] or move.axes_d[1]:
self.steppers[0].motor_enable(print_time, 1)
self.steppers[1].motor_enable(print_time, 1)
if move.axes_d[2]:
self.steppers[2].motor_enable(print_time, 1)
need_motor_enable = False
for i in StepList:
need_motor_enable |= self.steppers[i].need_motor_enable
self.need_motor_enable = need_motor_enable
def _check_endstops(self, move):
end_pos = move.end_pos
for i in StepList:
if (move.axes_d[i]
and (end_pos[i] < self.limits[i][0]
or end_pos[i] > self.limits[i][1])):
if self.limits[i][0] > self.limits[i][1]:
raise homing.EndstopMoveError(
end_pos, "Must home axis first")
raise homing.EndstopMoveError(end_pos)
def check_move(self, move):
limits = self.limits
xpos, ypos = move.end_pos[:2]
if (xpos < limits[0][0] or xpos > limits[0][1]
or ypos < limits[1][0] or ypos > limits[1][1]):
self._check_endstops(move)
if not move.axes_d[2]:
# Normal XY move - use defaults
return
# Move with Z - update velocity and accel for slower Z axis
self._check_endstops(move)
z_ratio = move.move_d / abs(move.axes_d[2])
move.limit_speed(
self.max_z_velocity * z_ratio, self.max_z_accel * z_ratio)
def move(self, print_time, move):
if self.need_motor_enable:
self._check_motor_enable(print_time, move)
axes_d = move.axes_d
cmove = self.cmove
self.move_fill(
cmove, print_time,
move.accel_t, move.cruise_t, move.decel_t,
move.start_pos[0], move.start_pos[1], move.start_pos[2],
axes_d[0], axes_d[1], axes_d[2],
move.start_v, move.cruise_v, move.accel)
stepper_a, stepper_b, stepper_z = self.steppers
if axes_d[0] or axes_d[1]:
stepper_a.step_itersolve(cmove)
stepper_b.step_itersolve(cmove)
if axes_d[2]:
stepper_z.step_itersolve(cmove)