mirror of https://github.com/Desuuuu/klipper.git
731 lines
30 KiB
Python
731 lines
30 KiB
Python
# Mesh Bed Leveling
|
|
#
|
|
# Copyright (C) 2018 Kevin O'Connor <kevin@koconnor.net>
|
|
# Copyright (C) 2018 Eric Callahan <arksine.code@gmail.com>
|
|
#
|
|
# This file may be distributed under the terms of the GNU GPLv3 license.
|
|
import logging
|
|
import math
|
|
import json
|
|
import probe
|
|
import collections
|
|
|
|
class BedMeshError(Exception):
|
|
pass
|
|
|
|
# PEP 485 isclose()
|
|
def isclose(a, b, rel_tol=1e-09, abs_tol=0.0):
|
|
return abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)
|
|
|
|
# Constrain value between min and max
|
|
def constrain(val, min_val, max_val):
|
|
return min(max_val, max(min_val, val))
|
|
|
|
# Linear interpolation between two values
|
|
def lerp(t, v0, v1):
|
|
return (1. - t) * v0 + t * v1
|
|
|
|
# retreive commma separated pair from config
|
|
def parse_pair(config, param, check=True, cast=float,
|
|
minval=None, maxval=None):
|
|
val = config.get(*param).strip().split(',', 1)
|
|
pair = tuple(cast(p.strip()) for p in val)
|
|
if check and len(pair) != 2:
|
|
raise config.error(
|
|
"bed_mesh: malformed '%s' value: %s"
|
|
% (param[0], config.get(*param)))
|
|
elif len(pair) == 1:
|
|
pair = (pair[0], pair[0])
|
|
if minval is not None:
|
|
if pair[0] < minval or pair[1] < minval:
|
|
raise config.error(
|
|
"Option '%s' in section bed_mesh must have a minimum of %s"
|
|
% (param[0]), minval)
|
|
if maxval is not None:
|
|
if pair[0] > maxval or pair[1] > maxval:
|
|
raise config.error(
|
|
"Option '%s' in section bed_mesh must have a maximum of %s"
|
|
% (param[0]), str(minval))
|
|
return pair
|
|
|
|
|
|
class BedMesh:
|
|
FADE_DISABLE = 0x7FFFFFFF
|
|
def __init__(self, config):
|
|
self.printer = config.get_printer()
|
|
self.printer.register_event_handler("klippy:connect",
|
|
self.handle_connect)
|
|
self.last_position = [0., 0., 0., 0.]
|
|
self.calibrate = BedMeshCalibrate(config, self)
|
|
self.z_mesh = None
|
|
self.toolhead = None
|
|
self.horizontal_move_z = config.getfloat('horizontal_move_z', 5.)
|
|
self.fade_start = config.getfloat('fade_start', 1.)
|
|
self.fade_end = config.getfloat('fade_end', 0.)
|
|
self.fade_dist = self.fade_end - self.fade_start
|
|
if self.fade_dist <= 0.:
|
|
self.fade_start = self.fade_end = self.FADE_DISABLE
|
|
self.log_fade_complete = False
|
|
self.base_fade_target = config.getfloat('fade_target', None)
|
|
self.fade_target = 0.
|
|
self.gcode = self.printer.lookup_object('gcode')
|
|
self.splitter = MoveSplitter(config, self.gcode)
|
|
self.gcode.register_command(
|
|
'BED_MESH_OUTPUT', self.cmd_BED_MESH_OUTPUT,
|
|
desc=self.cmd_BED_MESH_OUTPUT_help)
|
|
self.gcode.register_command(
|
|
'BED_MESH_CLEAR', self.cmd_BED_MESH_CLEAR,
|
|
desc=self.cmd_BED_MESH_CLEAR_help)
|
|
self.gcode.set_move_transform(self)
|
|
def handle_connect(self):
|
|
self.toolhead = self.printer.lookup_object('toolhead')
|
|
self.calibrate.load_default_profile()
|
|
def set_mesh(self, mesh):
|
|
if mesh is not None:
|
|
self.log_fade_complete = True
|
|
if self.base_fade_target is None:
|
|
self.fade_target = mesh.avg_z
|
|
else:
|
|
self.fade_target = self.base_fade_target
|
|
mesh_min, mesh_max = mesh.get_z_range()
|
|
if (not mesh_min <= self.fade_target <= mesh_max and
|
|
self.fade_target != 0.):
|
|
# fade target is non-zero, out of mesh range
|
|
err_target = self.fade_target
|
|
self.z_mesh = None
|
|
self.fade_target = 0.
|
|
raise self.gcode.error(
|
|
"bed_mesh: ERROR, fade_target lies outside of mesh z "
|
|
"range\nmin: %.4f, max: %.4f, fade_target: %.4f"
|
|
% (mesh_min, mesh_max, err_target))
|
|
else:
|
|
self.fade_target = 0.
|
|
self.z_mesh = mesh
|
|
self.splitter.initialize(mesh, self.fade_target)
|
|
# cache the current position before a transform takes place
|
|
self.gcode.reset_last_position()
|
|
def get_z_factor(self, z_pos):
|
|
if z_pos >= self.fade_end:
|
|
return 0.
|
|
elif z_pos >= self.fade_start:
|
|
return (self.fade_end - z_pos) / self.fade_dist
|
|
else:
|
|
return 1.
|
|
def get_position(self):
|
|
# Return last, non-transformed position
|
|
if self.z_mesh is None:
|
|
# No mesh calibrated, so send toolhead position
|
|
self.last_position[:] = self.toolhead.get_position()
|
|
self.last_position[2] -= self.fade_target
|
|
else:
|
|
# return current position minus the current z-adjustment
|
|
x, y, z, e = self.toolhead.get_position()
|
|
z_adj = self.z_mesh.calc_z(x, y)
|
|
z_adj = (self.get_z_factor(z) * (z_adj - self.fade_target) +
|
|
self.fade_target)
|
|
self.last_position[:] = [x, y, z - z_adj, e]
|
|
return list(self.last_position)
|
|
def move(self, newpos, speed):
|
|
factor = self.get_z_factor(newpos[2])
|
|
if self.z_mesh is None or not factor:
|
|
# No mesh calibrated, or mesh leveling phased out.
|
|
x, y, z, e = newpos
|
|
if self.log_fade_complete:
|
|
self.log_fade_complete = False
|
|
logging.info(
|
|
"bed_mesh fade complete: Current Z: %.4f fade_target: %.4f "
|
|
% (z, self.fade_target))
|
|
self.toolhead.move([x, y, z + self.fade_target, e], speed)
|
|
else:
|
|
self.splitter.build_move(self.last_position, newpos, factor)
|
|
while not self.splitter.traverse_complete:
|
|
split_move = self.splitter.split()
|
|
if split_move:
|
|
self.toolhead.move(split_move, speed)
|
|
else:
|
|
raise self.gcode.error(
|
|
"Mesh Leveling: Error splitting move ")
|
|
self.last_position[:] = newpos
|
|
cmd_BED_MESH_OUTPUT_help = "Retrieve interpolated grid of probed z-points"
|
|
def cmd_BED_MESH_OUTPUT(self, params):
|
|
if self.z_mesh is None:
|
|
self.gcode.respond_info("Bed has not been probed")
|
|
else:
|
|
self.calibrate.print_probed_positions(self.gcode.respond_info)
|
|
self.z_mesh.print_mesh(self.gcode.respond, self.horizontal_move_z)
|
|
cmd_BED_MESH_CLEAR_help = "Clear the Mesh so no z-adjusment is made"
|
|
def cmd_BED_MESH_CLEAR(self, params):
|
|
self.set_mesh(None)
|
|
|
|
|
|
class BedMeshCalibrate:
|
|
ALGOS = ['lagrange', 'bicubic']
|
|
def __init__(self, config, bedmesh):
|
|
self.printer = config.get_printer()
|
|
self.name = config.get_name()
|
|
self.bedmesh = bedmesh
|
|
self.probed_z_table = None
|
|
self.build_map = False
|
|
self.probe_params = collections.OrderedDict()
|
|
points = self._generate_points(config)
|
|
self._init_probe_params(config, points)
|
|
self.probe_helper = probe.ProbePointsHelper(
|
|
config, self.probe_finalize, points)
|
|
# setup persistent storage
|
|
self.profiles = {}
|
|
self._load_storage(config)
|
|
self.gcode = self.printer.lookup_object('gcode')
|
|
self.gcode.register_command(
|
|
'BED_MESH_CALIBRATE', self.cmd_BED_MESH_CALIBRATE,
|
|
desc=self.cmd_BED_MESH_CALIBRATE_help)
|
|
self.gcode.register_command(
|
|
'BED_MESH_MAP', self.cmd_BED_MESH_MAP,
|
|
desc=self.cmd_BED_MESH_MAP_help)
|
|
self.gcode.register_command(
|
|
'BED_MESH_PROFILE', self.cmd_BED_MESH_PROFILE,
|
|
desc=self.cmd_BED_MESH_PROFILE_help)
|
|
def _generate_points(self, config):
|
|
x_cnt, y_cnt = parse_pair(
|
|
config, ('probe_count', '3'), check=False, cast=int, minval=3)
|
|
self.probe_params['x_count'] = x_cnt
|
|
self.probe_params['y_count'] = y_cnt
|
|
min_x, min_y = parse_pair(config, ('min_point',))
|
|
max_x, max_y = parse_pair(config, ('max_point',))
|
|
if max_x <= min_x or max_y <= min_y:
|
|
raise config.error('bed_mesh: invalid min/max points')
|
|
x_dist = (max_x - min_x) / (x_cnt - 1)
|
|
y_dist = (max_y - min_y) / (y_cnt - 1)
|
|
# floor distances down to next hundredth
|
|
x_dist = math.floor(x_dist * 100) / 100
|
|
y_dist = math.floor(y_dist * 100) / 100
|
|
if x_dist <= 1. or y_dist <= 1.:
|
|
raise config.error("bed_mesh: min/max points too close together")
|
|
# re-calc x_max
|
|
max_x = min_x + x_dist * (x_cnt - 1)
|
|
pos_y = min_y
|
|
points = []
|
|
for i in range(y_cnt):
|
|
for j in range(x_cnt):
|
|
if not i % 2:
|
|
# move in positive directon
|
|
pos_x = min_x + j * x_dist
|
|
else:
|
|
# move in negative direction
|
|
pos_x = max_x - j * x_dist
|
|
points.append((pos_x, pos_y))
|
|
pos_y += y_dist
|
|
logging.info('bed_mesh: generated points')
|
|
for p in points:
|
|
logging.info("(%.1f, %.1f)" % (p[0], p[1]))
|
|
return points
|
|
def _init_probe_params(self, config, points):
|
|
self.probe_params['min_x'] = min(points, key=lambda p: p[0])[0]
|
|
self.probe_params['max_x'] = max(points, key=lambda p: p[0])[0]
|
|
self.probe_params['min_y'] = min(points, key=lambda p: p[1])[1]
|
|
self.probe_params['max_y'] = max(points, key=lambda p: p[1])[1]
|
|
self.probe_params['x_offset'] = 0.
|
|
self.probe_params['y_offset'] = 0.
|
|
pps = parse_pair(config, ('mesh_pps', '2'), check=False,
|
|
cast=int, minval=0)
|
|
self.probe_params['mesh_x_pps'] = pps[0]
|
|
self.probe_params['mesh_y_pps'] = pps[1]
|
|
self.probe_params['algo'] = config.get('algorithm', 'lagrange') \
|
|
.strip().lower()
|
|
if self.probe_params['algo'] not in self.ALGOS:
|
|
raise config.error(
|
|
"bed_mesh: Unknown algorithm <%s>"
|
|
% (self.probe_params['algo']))
|
|
self.probe_params['tension'] = config.getfloat(
|
|
'bicubic_tension', .2, minval=0., maxval=2.)
|
|
def _load_storage(self, config):
|
|
stored_profs = config.get_prefix_sections(self.name)
|
|
# Remove primary bed_mesh section, as it is not a stored profile
|
|
stored_profs = [s for s in stored_profs
|
|
if s.get_name() != self.name]
|
|
for profile in stored_profs:
|
|
name = profile.get_name().split(' ', 1)[1]
|
|
self.profiles[name] = {}
|
|
z_values = profile.get('points').split('\n')
|
|
self.profiles[name]['points'] = \
|
|
[[float(pt.strip()) for pt in line.split(',')]
|
|
for line in z_values if line.strip()]
|
|
self.profiles[name]['probe_params'] = params = \
|
|
collections.OrderedDict()
|
|
for key, value in self.probe_params.iteritems():
|
|
if type(value) is int:
|
|
params[key] = profile.getint(key)
|
|
elif type(value) is float:
|
|
params[key] = profile.getfloat(key)
|
|
elif type(value) is str:
|
|
params[key] = profile.get(key)
|
|
def save_profile(self, prof_name):
|
|
if self.probed_z_table is None:
|
|
self.gcode.respond_info(
|
|
"Unable to save to profile [%s], the bed has not been probed"
|
|
% (prof_name))
|
|
return
|
|
configfile = self.printer.lookup_object('configfile')
|
|
cfg_name = self.name + " " + prof_name
|
|
# set params
|
|
z_values = ""
|
|
for line in self.probed_z_table:
|
|
z_values += "\n "
|
|
for p in line:
|
|
z_values += "%.6f, " % p
|
|
z_values = z_values[:-2]
|
|
configfile.set(cfg_name, 'points', z_values)
|
|
for key, value in self.probe_params.iteritems():
|
|
configfile.set(cfg_name, key, value)
|
|
# save copy in local storage
|
|
self.profiles[prof_name] = profile = {}
|
|
profile['points'] = list(self.probed_z_table)
|
|
profile['probe_params'] = collections.OrderedDict(self.probe_params)
|
|
self.gcode.respond_info(
|
|
"Bed Mesh state has been saved to profile [%s]\n"
|
|
"for the current session. The SAVE_CONFIG command will\n"
|
|
"update the printer config file and restart the printer."
|
|
% (prof_name))
|
|
def load_profile(self, prof_name):
|
|
profile = self.profiles.get(prof_name, None)
|
|
if profile is None:
|
|
raise self.gcode.error(
|
|
"bed_mesh: Unknown profile [%s]" % prof_name)
|
|
self.probed_z_table = profile['points']
|
|
zmesh = ZMesh(profile['probe_params'])
|
|
try:
|
|
zmesh.build_mesh(self.probed_z_table)
|
|
except BedMeshError as e:
|
|
raise self.gcode.error(e.message)
|
|
self.bedmesh.set_mesh(zmesh)
|
|
def remove_profile(self, prof_name):
|
|
if prof_name in self.profiles:
|
|
configfile = self.printer.lookup_object('configfile')
|
|
configfile.remove_section('bed_mesh ' + prof_name)
|
|
del self.profiles[prof_name]
|
|
self.gcode.respond_info(
|
|
"Profile [%s] removed from storage for this session.\n"
|
|
"The SAVE_CONFIG command will update the printer\n"
|
|
"configuration and restart the printer" % (prof_name))
|
|
else:
|
|
self.gcode.respond_info(
|
|
"No profile named [%s] to remove" % (prof_name))
|
|
def load_default_profile(self):
|
|
if "default" in self.profiles:
|
|
self.load_profile("default")
|
|
cmd_BED_MESH_PROFILE_help = "Bed Mesh Persistent Storage management"
|
|
def cmd_BED_MESH_PROFILE(self, params):
|
|
options = collections.OrderedDict({
|
|
'LOAD': self.load_profile,
|
|
'SAVE': self.save_profile,
|
|
'REMOVE': self.remove_profile
|
|
})
|
|
for key in options:
|
|
name = self.gcode.get_str(key, params, None)
|
|
if name is not None:
|
|
if name == "default" and key != 'LOAD':
|
|
self.gcode.respond_info(
|
|
"Profile 'default' is reserved, please chose"
|
|
" another profile name.")
|
|
else:
|
|
options[key](name)
|
|
return
|
|
self.gcode.respond_info(
|
|
"Invalid syntax '%s'" % (params['#original']))
|
|
cmd_BED_MESH_MAP_help = "Probe the bed and serialize output"
|
|
def cmd_BED_MESH_MAP(self, params):
|
|
self.build_map = True
|
|
self.start_calibration(params)
|
|
cmd_BED_MESH_CALIBRATE_help = "Perform Mesh Bed Leveling"
|
|
def cmd_BED_MESH_CALIBRATE(self, params):
|
|
self.build_map = False
|
|
self.start_calibration(params)
|
|
def start_calibration(self, params):
|
|
self.bedmesh.set_mesh(None)
|
|
self.probe_helper.start_probe(params)
|
|
def print_probed_positions(self, print_func):
|
|
if self.probed_z_table is not None:
|
|
msg = "Mesh Leveling Probed Z positions:\n"
|
|
for line in self.probed_z_table:
|
|
for x in line:
|
|
msg += " %f" % x
|
|
msg += "\n"
|
|
print_func(msg)
|
|
else:
|
|
print_func("bed_mesh: bed has not been probed")
|
|
def probe_finalize(self, offsets, positions):
|
|
self.probe_params['x_offset'] = offsets[0]
|
|
self.probe_params['y_offset'] = offsets[1]
|
|
z_offset = offsets[2]
|
|
x_cnt = self.probe_params['x_count']
|
|
y_cnt = self.probe_params['y_count']
|
|
# create a 2-D array representing the probed z-positions.
|
|
self.probed_z_table = [
|
|
[0. for i in range(x_cnt)] for j in range(y_cnt)]
|
|
# Check for multi-sampled points
|
|
z_table_len = x_cnt * y_cnt
|
|
if len(positions) != z_table_len:
|
|
raise self.gcode.error(
|
|
("bed_mesh: Invalid probe table length:\n"
|
|
"Sampled table length: %d") % len(positions))
|
|
# Populate the organized probed table
|
|
for i in range(z_table_len):
|
|
y_position = i / x_cnt
|
|
x_position = 0
|
|
if y_position & 1 == 0:
|
|
# Even y count, x probed in positive directon
|
|
x_position = i % x_cnt
|
|
else:
|
|
# Odd y count, x probed in the negative directon
|
|
x_position = (x_cnt - 1) - (i % x_cnt)
|
|
self.probed_z_table[y_position][x_position] = \
|
|
positions[i][2] - z_offset
|
|
if self.build_map:
|
|
params = self.probe_params
|
|
outdict = {
|
|
'min_point': (params['min_x'], params['min_y']),
|
|
'max_point': (params['max_x'], params['max_y']),
|
|
'xy_offset': offsets[:2],
|
|
'z_positions': self.probed_z_table}
|
|
self.gcode.respond(
|
|
"mesh_map_output " + json.dumps(outdict))
|
|
else:
|
|
mesh = ZMesh(self.probe_params)
|
|
try:
|
|
mesh.build_mesh(self.probed_z_table)
|
|
except BedMeshError as e:
|
|
raise self.gcode.error(e.message)
|
|
self.bedmesh.set_mesh(mesh)
|
|
self.gcode.respond_info("Mesh Bed Leveling Complete")
|
|
self.save_profile("default")
|
|
|
|
|
|
class MoveSplitter:
|
|
def __init__(self, config, gcode):
|
|
self.split_delta_z = config.getfloat(
|
|
'split_delta_z', .025, minval=0.01)
|
|
self.move_check_distance = config.getfloat(
|
|
'move_check_distance', 5., minval=3.)
|
|
self.z_mesh = None
|
|
self.gcode = gcode
|
|
def initialize(self, mesh, fade_offset):
|
|
self.z_mesh = mesh
|
|
self.fade_offset = fade_offset
|
|
def build_move(self, prev_pos, next_pos, factor):
|
|
self.prev_pos = tuple(prev_pos)
|
|
self.next_pos = tuple(next_pos)
|
|
self.current_pos = list(prev_pos)
|
|
self.z_factor = factor
|
|
self.z_offset = self._calc_z_offset(prev_pos)
|
|
self.traverse_complete = False
|
|
self.distance_checked = 0.
|
|
axes_d = [self.next_pos[i] - self.prev_pos[i] for i in range(4)]
|
|
self.total_move_length = math.sqrt(sum([d*d for d in axes_d[:3]]))
|
|
self.axis_move = [not isclose(d, 0., abs_tol=1e-10) for d in axes_d]
|
|
def _calc_z_offset(self, pos):
|
|
z = self.z_mesh.calc_z(pos[0], pos[1])
|
|
return self.z_factor * (z - self.fade_offset) + self.fade_offset
|
|
def _set_next_move(self, distance_from_prev):
|
|
t = distance_from_prev / self.total_move_length
|
|
if t > 1. or t < 0.:
|
|
raise self.gcode.error(
|
|
"bed_mesh: Slice distance is negative "
|
|
"or greater than entire move length")
|
|
for i in range(4):
|
|
if self.axis_move[i]:
|
|
self.current_pos[i] = lerp(
|
|
t, self.prev_pos[i], self.next_pos[i])
|
|
def split(self):
|
|
if not self.traverse_complete:
|
|
if self.axis_move[0] or self.axis_move[1]:
|
|
# X and/or Y axis move, traverse if necessary
|
|
while self.distance_checked + self.move_check_distance \
|
|
< self.total_move_length:
|
|
self.distance_checked += self.move_check_distance
|
|
self._set_next_move(self.distance_checked)
|
|
next_z = self._calc_z_offset(self.current_pos)
|
|
if abs(next_z - self.z_offset) >= self.split_delta_z:
|
|
self.z_offset = next_z
|
|
return self.current_pos[0], self.current_pos[1], \
|
|
self.current_pos[2] + self.z_offset, \
|
|
self.current_pos[3]
|
|
# end of move reached
|
|
self.current_pos[:] = self.next_pos
|
|
self.z_offset = self._calc_z_offset(self.current_pos)
|
|
# Its okay to add Z-Offset to the final move, since it will not be
|
|
# used again.
|
|
self.current_pos[2] += self.z_offset
|
|
self.traverse_complete = True
|
|
return self.current_pos
|
|
else:
|
|
# Traverse complete
|
|
return None
|
|
|
|
|
|
class ZMesh:
|
|
def __init__(self, params):
|
|
self.mesh_z_table = None
|
|
self.probe_params = params
|
|
self.avg_z = 0.
|
|
logging.debug('bed_mesh: probe/mesh parameters:')
|
|
for key, value in self.probe_params.iteritems():
|
|
logging.debug("%s : %s" % (key, value))
|
|
self.mesh_x_min = params['min_x'] + params['x_offset']
|
|
self.mesh_x_max = params['max_x'] + params['x_offset']
|
|
self.mesh_y_min = params['min_y'] + params['y_offset']
|
|
self.mesh_y_max = params['max_y'] + params['y_offset']
|
|
logging.debug(
|
|
"bed_mesh: Mesh Min: (%.2f,%.2f) Mesh Max: (%.2f,%.2f)"
|
|
% (self.mesh_x_min, self.mesh_y_min,
|
|
self.mesh_x_max, self.mesh_y_max))
|
|
if params['algo'] == 'bicubic':
|
|
self._sample = self._sample_bicubic
|
|
else:
|
|
self._sample = self._sample_lagrange
|
|
# Nummber of points to interpolate per segment
|
|
mesh_x_pps = params['mesh_x_pps']
|
|
mesh_y_pps = params['mesh_y_pps']
|
|
px_cnt = params['x_count']
|
|
py_cnt = params['y_count']
|
|
if px_cnt == 3 or py_cnt == 3:
|
|
# a mesh with 3 points on either axis defaults to legrange
|
|
# upsampling
|
|
self._sample = self._sample_lagrange
|
|
self.probe_params['algo'] = 'lagrange'
|
|
if mesh_x_pps == 0 and mesh_y_pps == 0:
|
|
# No interpolation, sample the probed points directly
|
|
self._sample = self._sample_direct
|
|
self.probe_params['algo'] = 'direct'
|
|
self.mesh_x_count = (px_cnt - 1) * mesh_x_pps + px_cnt
|
|
self.mesh_y_count = (py_cnt - 1) * mesh_y_pps + py_cnt
|
|
self.x_mult = mesh_x_pps + 1
|
|
self.y_mult = mesh_y_pps + 1
|
|
logging.debug("bed_mesh: Mesh grid size - X:%d, Y:%d"
|
|
% (self.mesh_x_count, self.mesh_y_count))
|
|
self.mesh_x_dist = (self.mesh_x_max - self.mesh_x_min) / \
|
|
(self.mesh_x_count - 1)
|
|
self.mesh_y_dist = (self.mesh_y_max - self.mesh_y_min) / \
|
|
(self.mesh_y_count - 1)
|
|
def print_mesh(self, print_func, move_z=None):
|
|
if self.mesh_z_table is not None:
|
|
msg = "Mesh X,Y: %d,%d\n" % (self.mesh_x_count, self.mesh_y_count)
|
|
if move_z is not None:
|
|
msg += "Search Height: %d\n" % (move_z)
|
|
msg += "Mesh Average: %.2f\n" % (self.avg_z)
|
|
rng = self.get_z_range()
|
|
msg += "Mesh Range: min=%.4f max=%.4f\n" % (rng[0], rng[1])
|
|
msg += "Interpolation Algorithm: %s\n" \
|
|
% (self.probe_params['algo'])
|
|
msg += "Measured points:\n"
|
|
for y_line in range(self.mesh_y_count - 1, -1, -1):
|
|
for z in self.mesh_z_table[y_line]:
|
|
msg += " %f" % (z)
|
|
msg += "\n"
|
|
print_func(msg)
|
|
else:
|
|
print_func("bed_mesh: Z Mesh not generated")
|
|
def build_mesh(self, z_table):
|
|
self._sample(z_table)
|
|
self.avg_z = (sum([sum(x) for x in self.mesh_z_table]) /
|
|
sum([len(x) for x in self.mesh_z_table]))
|
|
# Round average to the nearest 100th. This
|
|
# should produce an offset that is divisible by common
|
|
# z step distances
|
|
self.avg_z = round(self.avg_z, 2)
|
|
self.print_mesh(logging.debug)
|
|
def get_x_coordinate(self, index):
|
|
return self.mesh_x_min + self.mesh_x_dist * index
|
|
def get_y_coordinate(self, index):
|
|
return self.mesh_y_min + self.mesh_y_dist * index
|
|
def calc_z(self, x, y):
|
|
if self.mesh_z_table is not None:
|
|
tbl = self.mesh_z_table
|
|
tx, xidx = self._get_linear_index(x, 0)
|
|
ty, yidx = self._get_linear_index(y, 1)
|
|
z0 = lerp(tx, tbl[yidx][xidx], tbl[yidx][xidx+1])
|
|
z1 = lerp(tx, tbl[yidx+1][xidx], tbl[yidx+1][xidx+1])
|
|
return lerp(ty, z0, z1)
|
|
else:
|
|
# No mesh table generated, no z-adjustment
|
|
return 0.
|
|
def get_z_range(self):
|
|
if self.mesh_z_table is not None:
|
|
mesh_min = min([min(x) for x in self.mesh_z_table])
|
|
mesh_max = max([max(x) for x in self.mesh_z_table])
|
|
return mesh_min, mesh_max
|
|
else:
|
|
return 0., 0.
|
|
def _get_linear_index(self, coord, axis):
|
|
if axis == 0:
|
|
# X-axis
|
|
mesh_min = self.mesh_x_min
|
|
mesh_cnt = self.mesh_x_count
|
|
mesh_dist = self.mesh_x_dist
|
|
cfunc = self.get_x_coordinate
|
|
else:
|
|
# Y-axis
|
|
mesh_min = self.mesh_y_min
|
|
mesh_cnt = self.mesh_y_count
|
|
mesh_dist = self.mesh_y_dist
|
|
cfunc = self.get_y_coordinate
|
|
t = 0.
|
|
idx = int(math.floor((coord - mesh_min) / mesh_dist))
|
|
idx = constrain(idx, 0, mesh_cnt - 2)
|
|
t = (coord - cfunc(idx)) / mesh_dist
|
|
return constrain(t, 0., 1.), idx
|
|
def _sample_direct(self, z_table):
|
|
self.mesh_z_table = z_table
|
|
def _sample_lagrange(self, z_table):
|
|
x_mult = self.x_mult
|
|
y_mult = self.y_mult
|
|
self.mesh_z_table = \
|
|
[[0. if ((i % x_mult) or (j % y_mult))
|
|
else z_table[j/y_mult][i/x_mult]
|
|
for i in range(self.mesh_x_count)]
|
|
for j in range(self.mesh_y_count)]
|
|
xpts, ypts = self._get_lagrange_coords(z_table)
|
|
# Interpolate X coordinates
|
|
for i in range(self.mesh_y_count):
|
|
# only interpolate X-rows that have probed coordinates
|
|
if i % y_mult != 0:
|
|
continue
|
|
for j in range(self.mesh_x_count):
|
|
if j % x_mult == 0:
|
|
continue
|
|
x = self.get_x_coordinate(j)
|
|
self.mesh_z_table[i][j] = self._calc_lagrange(xpts, x, i, 0)
|
|
# Interpolate Y coordinates
|
|
for i in range(self.mesh_x_count):
|
|
for j in range(self.mesh_y_count):
|
|
if j % y_mult == 0:
|
|
continue
|
|
y = self.get_y_coordinate(j)
|
|
self.mesh_z_table[j][i] = self._calc_lagrange(ypts, y, i, 1)
|
|
def _get_lagrange_coords(self, z_table):
|
|
xpts = []
|
|
ypts = []
|
|
for i in range(self.probe_params['x_count']):
|
|
xpts.append(self.get_x_coordinate(i * self.x_mult))
|
|
for j in range(self.probe_params['y_count']):
|
|
ypts.append(self.get_y_coordinate(j * self.y_mult))
|
|
return xpts, ypts
|
|
def _calc_lagrange(self, lpts, c, vec, axis=0):
|
|
pt_cnt = len(lpts)
|
|
total = 0.
|
|
for i in range(pt_cnt):
|
|
n = 1.
|
|
d = 1.
|
|
for j in range(pt_cnt):
|
|
if j == i:
|
|
continue
|
|
n *= (c - lpts[j])
|
|
d *= (lpts[i] - lpts[j])
|
|
if axis == 0:
|
|
# Calc X-Axis
|
|
z = self.mesh_z_table[vec][i*self.x_mult]
|
|
else:
|
|
# Calc Y-Axis
|
|
z = self.mesh_z_table[i*self.y_mult][vec]
|
|
total += z * n / d
|
|
return total
|
|
def _sample_bicubic(self, z_table):
|
|
# should work for any number of probe points above 3x3
|
|
x_mult = self.x_mult
|
|
y_mult = self.y_mult
|
|
c = self.probe_params['tension']
|
|
self.mesh_z_table = \
|
|
[[0. if ((i % x_mult) or (j % y_mult))
|
|
else z_table[j/y_mult][i/x_mult]
|
|
for i in range(self.mesh_x_count)]
|
|
for j in range(self.mesh_y_count)]
|
|
# Interpolate X values
|
|
for y in range(self.mesh_y_count):
|
|
if y % y_mult != 0:
|
|
continue
|
|
for x in range(self.mesh_x_count):
|
|
if x % x_mult == 0:
|
|
continue
|
|
pts = self._get_x_ctl_pts(x, y)
|
|
self.mesh_z_table[y][x] = self._cardinal_spline(pts, c)
|
|
# Interpolate Y values
|
|
for x in range(self.mesh_x_count):
|
|
for y in range(self.mesh_y_count):
|
|
if y % y_mult == 0:
|
|
continue
|
|
pts = self._get_y_ctl_pts(x, y)
|
|
self.mesh_z_table[y][x] = self._cardinal_spline(pts, c)
|
|
def _get_x_ctl_pts(self, x, y):
|
|
# Fetch control points and t for a X value in the mesh
|
|
x_mult = self.x_mult
|
|
x_row = self.mesh_z_table[y]
|
|
last_pt = self.mesh_x_count - 1 - x_mult
|
|
if x < x_mult:
|
|
p0 = p1 = x_row[0]
|
|
p2 = x_row[x_mult]
|
|
p3 = x_row[2*x_mult]
|
|
t = x / float(x_mult)
|
|
elif x > last_pt:
|
|
p0 = x_row[last_pt - x_mult]
|
|
p1 = x_row[last_pt]
|
|
p2 = p3 = x_row[last_pt + x_mult]
|
|
t = (x - last_pt) / float(x_mult)
|
|
else:
|
|
found = False
|
|
for i in range(x_mult, last_pt, x_mult):
|
|
if x > i and x < (i + x_mult):
|
|
p0 = x_row[i - x_mult]
|
|
p1 = x_row[i]
|
|
p2 = x_row[i + x_mult]
|
|
p3 = x_row[i + 2*x_mult]
|
|
t = (x - i) / float(x_mult)
|
|
found = True
|
|
break
|
|
if not found:
|
|
raise BedMeshError(
|
|
"bed_mesh: Error finding x control points")
|
|
return p0, p1, p2, p3, t
|
|
def _get_y_ctl_pts(self, x, y):
|
|
# Fetch control points and t for a Y value in the mesh
|
|
y_mult = self.y_mult
|
|
last_pt = self.mesh_y_count - 1 - y_mult
|
|
y_col = self.mesh_z_table
|
|
if y < y_mult:
|
|
p0 = p1 = y_col[0][x]
|
|
p2 = y_col[y_mult][x]
|
|
p3 = y_col[2*y_mult][x]
|
|
t = y / float(y_mult)
|
|
elif y > last_pt:
|
|
p0 = y_col[last_pt - y_mult][x]
|
|
p1 = y_col[last_pt][x]
|
|
p2 = p3 = y_col[last_pt + y_mult][x]
|
|
t = (y - last_pt) / float(y_mult)
|
|
else:
|
|
found = False
|
|
for i in range(y_mult, last_pt, y_mult):
|
|
if y > i and y < (i + y_mult):
|
|
p0 = y_col[i - y_mult][x]
|
|
p1 = y_col[i][x]
|
|
p2 = y_col[i + y_mult][x]
|
|
p3 = y_col[i + 2*y_mult][x]
|
|
t = (y - i) / float(y_mult)
|
|
found = True
|
|
break
|
|
if not found:
|
|
raise BedMeshError(
|
|
"bed_mesh: Error finding y control points")
|
|
return p0, p1, p2, p3, t
|
|
def _cardinal_spline(self, p, tension):
|
|
t = p[4]
|
|
t2 = t*t
|
|
t3 = t2*t
|
|
m1 = tension * (p[2] - p[0])
|
|
m2 = tension * (p[3] - p[1])
|
|
a = p[1] * (2*t3 - 3*t2 + 1)
|
|
b = p[2] * (-2*t3 + 3*t2)
|
|
c = m1 * (t3 - 2*t2 + t)
|
|
d = m2 * (t3 - t2)
|
|
return a + b + c + d
|
|
|
|
|
|
def load_config(config):
|
|
return BedMesh(config)
|