klipper-dgus/klippy/chelper/itersolve.c

293 lines
10 KiB
C

// Iterative solver for kinematic moves
//
// Copyright (C) 2018-2020 Kevin O'Connor <kevin@koconnor.net>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
#include <math.h> // fabs
#include <stddef.h> // offsetof
#include <string.h> // memset
#include "compiler.h" // __visible
#include "itersolve.h" // itersolve_generate_steps
#include "pyhelper.h" // errorf
#include "stepcompress.h" // queue_append_start
#include "trapq.h" // struct move
/****************************************************************
* Main iterative solver
****************************************************************/
struct timepos {
double time, position;
};
// Find step using "false position" method
static struct timepos
itersolve_find_step(struct stepper_kinematics *sk, struct move *m
, struct timepos low, struct timepos high
, double target)
{
sk_calc_callback calc_position_cb = sk->calc_position_cb;
struct timepos best_guess = high;
low.position -= target;
high.position -= target;
if (!high.position)
// The high range was a perfect guess for the next step
return best_guess;
int high_sign = signbit(high.position);
if (high_sign == signbit(low.position))
// The target is not in the low/high range - return low range
return (struct timepos){ low.time, target };
for (;;) {
double guess_time = ((low.time*high.position - high.time*low.position)
/ (high.position - low.position));
if (fabs(guess_time - best_guess.time) <= .000000001)
break;
best_guess.time = guess_time;
best_guess.position = calc_position_cb(sk, m, guess_time);
double guess_position = best_guess.position - target;
int guess_sign = signbit(guess_position);
if (guess_sign == high_sign) {
high.time = guess_time;
high.position = guess_position;
} else {
low.time = guess_time;
low.position = guess_position;
}
}
return best_guess;
}
#define SEEK_TIME_RESET 0.000100
// Generate step times for a portion of a move
static int32_t
itersolve_gen_steps_range(struct stepper_kinematics *sk, struct move *m
, double abs_start, double abs_end)
{
sk_calc_callback calc_position_cb = sk->calc_position_cb;
double half_step = .5 * sk->step_dist;
double start = abs_start - m->print_time, end = abs_end - m->print_time;
if (start < 0.)
start = 0.;
if (end > m->move_t)
end = m->move_t;
struct timepos last = { start, sk->commanded_pos }, low = last, high = last;
double seek_time_delta = SEEK_TIME_RESET;
int sdir = stepcompress_get_step_dir(sk->sc), is_dir_change = 0;
for (;;) {
double diff = high.position - last.position, dist = sdir ? diff : -diff;
if (dist >= half_step) {
// Have valid upper bound - now find step
double target = last.position + (sdir ? half_step : -half_step);
struct timepos next = itersolve_find_step(sk, m, low, high, target);
// Add step at given time
int ret = stepcompress_append(sk->sc, sdir
, m->print_time, next.time);
if (ret)
return ret;
seek_time_delta = next.time - last.time;
if (seek_time_delta < .000000001)
seek_time_delta = .000000001;
if (is_dir_change && seek_time_delta > SEEK_TIME_RESET)
seek_time_delta = SEEK_TIME_RESET;
is_dir_change = 0;
last.position = target + (sdir ? half_step : -half_step);
last.time = next.time;
low = next;
if (low.time < high.time)
// The existing search range is still valid
continue;
} else if (dist > 0.) {
// Avoid rollback if stepper fully reaches target position
stepcompress_commit(sk->sc);
} else if (unlikely(dist < -(half_step + .000000001))) {
// Found direction change
is_dir_change = 1;
if (seek_time_delta > SEEK_TIME_RESET)
seek_time_delta = SEEK_TIME_RESET;
if (low.time > last.time) {
// Update direction and retry
sdir = !sdir;
continue;
}
// Must update range to avoid re-finding previous time
if (high.time > last.time + .000000001) {
// Reduce the high bound - it will become a better low bound
high.time = (last.time + high.time) * .5;
high.position = calc_position_cb(sk, m, high.time);
continue;
}
}
// Need to increase the search range to find an upper bound
if (high.time >= end)
// At end of move
break;
low = high;
do {
high.time = last.time + seek_time_delta;
seek_time_delta += seek_time_delta;
} while (unlikely(high.time <= low.time));
if (high.time > end)
high.time = end;
high.position = calc_position_cb(sk, m, high.time);
}
sk->commanded_pos = last.position;
if (sk->post_cb)
sk->post_cb(sk);
return 0;
}
/****************************************************************
* Interface functions
****************************************************************/
// Check if a move is likely to cause movement on a stepper
static inline int
check_active(struct stepper_kinematics *sk, struct move *m)
{
int af = sk->active_flags;
return ((af & AF_X && m->axes_r.x != 0.)
|| (af & AF_Y && m->axes_r.y != 0.)
|| (af & AF_Z && m->axes_r.z != 0.));
}
// Generate step times for a range of moves on the trapq
int32_t __visible
itersolve_generate_steps(struct stepper_kinematics *sk, double flush_time)
{
double last_flush_time = sk->last_flush_time;
sk->last_flush_time = flush_time;
if (!sk->tq)
return 0;
trapq_check_sentinels(sk->tq);
struct move *m = list_first_entry(&sk->tq->moves, struct move, node);
while (last_flush_time >= m->print_time + m->move_t)
m = list_next_entry(m, node);
double force_steps_time = sk->last_move_time + sk->gen_steps_post_active;
int skip_count = 0;
for (;;) {
double move_start = m->print_time, move_end = move_start + m->move_t;
if (check_active(sk, m)) {
if (skip_count && sk->gen_steps_pre_active) {
// Must generate steps leading up to stepper activity
double abs_start = move_start - sk->gen_steps_pre_active;
if (abs_start < last_flush_time)
abs_start = last_flush_time;
if (abs_start < force_steps_time)
abs_start = force_steps_time;
struct move *pm = list_prev_entry(m, node);
while (--skip_count && pm->print_time > abs_start)
pm = list_prev_entry(pm, node);
do {
int32_t ret = itersolve_gen_steps_range(sk, pm, abs_start
, flush_time);
if (ret)
return ret;
pm = list_next_entry(pm, node);
} while (pm != m);
}
// Generate steps for this move
int32_t ret = itersolve_gen_steps_range(sk, m, last_flush_time
, flush_time);
if (ret)
return ret;
if (move_end >= flush_time) {
sk->last_move_time = flush_time;
return 0;
}
skip_count = 0;
sk->last_move_time = move_end;
force_steps_time = sk->last_move_time + sk->gen_steps_post_active;
} else {
if (move_start < force_steps_time) {
// Must generates steps just past stepper activity
double abs_end = force_steps_time;
if (abs_end > flush_time)
abs_end = flush_time;
int32_t ret = itersolve_gen_steps_range(sk, m, last_flush_time
, abs_end);
if (ret)
return ret;
skip_count = 1;
} else {
// This move doesn't impact this stepper - skip it
skip_count++;
}
if (flush_time + sk->gen_steps_pre_active <= move_end)
return 0;
}
m = list_next_entry(m, node);
}
}
// Check if the given stepper is likely to be active in the given time range
double __visible
itersolve_check_active(struct stepper_kinematics *sk, double flush_time)
{
if (!sk->tq)
return 0.;
trapq_check_sentinels(sk->tq);
struct move *m = list_first_entry(&sk->tq->moves, struct move, node);
while (sk->last_flush_time >= m->print_time + m->move_t)
m = list_next_entry(m, node);
for (;;) {
if (check_active(sk, m))
return m->print_time;
if (flush_time <= m->print_time + m->move_t)
return 0.;
m = list_next_entry(m, node);
}
}
// Report if the given stepper is registered for the given axis
int32_t __visible
itersolve_is_active_axis(struct stepper_kinematics *sk, char axis)
{
if (axis < 'x' || axis > 'z')
return 0;
return (sk->active_flags & (AF_X << (axis - 'x'))) != 0;
}
void __visible
itersolve_set_trapq(struct stepper_kinematics *sk, struct trapq *tq)
{
sk->tq = tq;
}
void __visible
itersolve_set_stepcompress(struct stepper_kinematics *sk
, struct stepcompress *sc, double step_dist)
{
sk->sc = sc;
sk->step_dist = step_dist;
}
double __visible
itersolve_calc_position_from_coord(struct stepper_kinematics *sk
, double x, double y, double z)
{
struct move m;
memset(&m, 0, sizeof(m));
m.start_pos.x = x;
m.start_pos.y = y;
m.start_pos.z = z;
m.move_t = 1000.;
return sk->calc_position_cb(sk, &m, 500.);
}
void __visible
itersolve_set_position(struct stepper_kinematics *sk
, double x, double y, double z)
{
sk->commanded_pos = itersolve_calc_position_from_coord(sk, x, y, z);
}
double __visible
itersolve_get_commanded_pos(struct stepper_kinematics *sk)
{
return sk->commanded_pos;
}