mirror of https://github.com/Desuuuu/klipper.git
141 lines
6.0 KiB
Python
141 lines
6.0 KiB
Python
# Code for handling printer nozzle extruders
|
|
#
|
|
# Copyright (C) 2016 Kevin O'Connor <kevin@koconnor.net>
|
|
#
|
|
# This file may be distributed under the terms of the GNU GPLv3 license.
|
|
import logging
|
|
import stepper, heater, homing
|
|
|
|
class PrinterExtruder:
|
|
def __init__(self, printer, config):
|
|
self.heater = heater.PrinterHeater(printer, config)
|
|
self.stepper = stepper.PrinterStepper(printer, config)
|
|
self.pressure_advance = config.getfloat('pressure_advance', 0.)
|
|
self.stepper_pos = 0
|
|
self.extrude_pos = 0.
|
|
def build_config(self):
|
|
self.heater.build_config()
|
|
self.stepper.set_max_jerk(9999999.9)
|
|
self.stepper.build_config()
|
|
def motor_off(self, move_time):
|
|
self.stepper.motor_enable(move_time, 0)
|
|
def check_move(self, move):
|
|
if not self.heater.can_extrude:
|
|
raise homing.EndstopError(move.end_pos, "Extrude below minimum temp")
|
|
if (not move.do_calc_junction
|
|
and not move.axes_d[0] and not move.axes_d[1]
|
|
and not move.axes_d[2]):
|
|
# Extrude only move - limit accel and velocity
|
|
move.limit_speed(self.stepper.max_velocity, self.stepper.max_accel)
|
|
def move(self, move_time, move):
|
|
move_d = move.move_d
|
|
inv_accel = 1. / move.accel
|
|
|
|
start_v, cruise_v, end_v = move.start_v, move.cruise_v, move.end_v
|
|
accel_t, cruise_t, decel_t = move.accel_t, move.cruise_t, move.decel_t
|
|
accel_d = move.accel_r * move_d
|
|
cruise_d = move.cruise_r * move_d
|
|
decel_d = move.decel_r * move_d
|
|
|
|
retract_t = retract_d = retract_v = 0.
|
|
decel_v = cruise_v
|
|
|
|
# Update for pressure advance
|
|
if (move.axes_d[3] >= 0. and (move.axes_d[0] or move.axes_d[1])
|
|
and self.pressure_advance):
|
|
# Increase accel_d and start_v when accelerating
|
|
extra_accel_d = (cruise_v - start_v) * self.pressure_advance
|
|
accel_d += extra_accel_d
|
|
if accel_t:
|
|
start_v += extra_accel_d / accel_t
|
|
# Update decel and retract parameters when decelerating
|
|
if decel_t:
|
|
extra_decel_d = (cruise_v - end_v) * self.pressure_advance
|
|
extra_decel_v = extra_decel_d / decel_t
|
|
decel_v -= extra_decel_v
|
|
end_v -= extra_decel_v
|
|
if decel_v <= 0.:
|
|
# The entire decel phase is replaced with retraction
|
|
retract_t = decel_t
|
|
retract_d = -(end_v + decel_v) * 0.5 * decel_t
|
|
retract_v = -decel_v
|
|
decel_t = decel_d = 0.
|
|
elif end_v < 0.:
|
|
# Split decel phase into decel and retraction
|
|
retract_t = -end_v * inv_accel
|
|
retract_d = -end_v * 0.5 * retract_t
|
|
decel_t -= retract_t
|
|
decel_d = decel_v * 0.5 * decel_t
|
|
else:
|
|
# There is still only a decel phase (no retraction)
|
|
decel_d -= extra_decel_d
|
|
|
|
# Determine regular steps
|
|
extrude_r = move.axes_d[3] / move_d
|
|
forward_d = accel_d + cruise_d + decel_d
|
|
start_pos = self.extrude_pos
|
|
end_pos = start_pos + forward_d * extrude_r
|
|
inv_step_dist = self.stepper.inv_step_dist
|
|
new_step_pos = int(end_pos*inv_step_dist + 0.5)
|
|
if new_step_pos != self.stepper_pos:
|
|
steps = forward_d * extrude_r * inv_step_dist
|
|
step_offset = self.stepper_pos - start_pos * inv_step_dist + 0.5
|
|
self.stepper_pos = new_step_pos
|
|
sdir = 0
|
|
if steps < 0:
|
|
sdir = 1
|
|
steps = -steps
|
|
step_offset = 1. - step_offset
|
|
mcu_time, so = self.stepper.prep_move(move_time, sdir)
|
|
|
|
move_step_d = forward_d / steps
|
|
inv_move_step_d = 1. / move_step_d
|
|
|
|
# Acceleration steps
|
|
#t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
|
|
accel_time_offset = start_v * inv_accel
|
|
accel_sqrt_offset = accel_time_offset**2
|
|
accel_multiplier = 2.0 * move_step_d * inv_accel
|
|
accel_steps = accel_d * inv_move_step_d
|
|
step_offset = so.step_sqrt(
|
|
mcu_time - accel_time_offset, accel_steps, step_offset
|
|
, accel_sqrt_offset, accel_multiplier)
|
|
mcu_time += accel_t
|
|
# Cruising steps
|
|
#t = pos/cruise_v
|
|
cruise_multiplier = move_step_d / cruise_v
|
|
cruise_steps = cruise_d * inv_move_step_d
|
|
step_offset = so.step_factor(
|
|
mcu_time, cruise_steps, step_offset, cruise_multiplier)
|
|
mcu_time += cruise_t
|
|
# Deceleration steps
|
|
#t = cruise_v/accel - sqrt((cruise_v/accel)**2 - 2*pos/accel)
|
|
decel_time_offset = decel_v * inv_accel
|
|
decel_sqrt_offset = decel_time_offset**2
|
|
decel_steps = decel_d * inv_move_step_d
|
|
so.step_sqrt(
|
|
mcu_time + decel_time_offset, decel_steps, step_offset
|
|
, decel_sqrt_offset, -accel_multiplier)
|
|
|
|
# Determine retract steps
|
|
start_pos = end_pos
|
|
end_pos -= retract_d * extrude_r
|
|
new_step_pos = int(end_pos*inv_step_dist + 0.5)
|
|
if new_step_pos != self.stepper_pos:
|
|
steps = retract_d * extrude_r * inv_step_dist
|
|
step_offset = start_pos * inv_step_dist - self.stepper_pos + 0.5
|
|
self.stepper_pos = new_step_pos
|
|
mcu_time, so = self.stepper.prep_move(
|
|
move_time+accel_t+cruise_t+decel_t, 1)
|
|
|
|
move_step_d = retract_d / steps
|
|
|
|
# Acceleration steps
|
|
#t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
|
|
accel_time_offset = retract_v * inv_accel
|
|
accel_sqrt_offset = accel_time_offset**2
|
|
accel_multiplier = 2.0 * move_step_d * inv_accel
|
|
so.step_sqrt(mcu_time - accel_time_offset, steps, step_offset
|
|
, accel_sqrt_offset, accel_multiplier)
|
|
self.extrude_pos = end_pos
|