klipper-dgus/lib/hal-stm32f1/source/stm32f1xx_ll_tim.c

1217 lines
46 KiB
C

/**
******************************************************************************
* @file stm32f1xx_ll_tim.c
* @author MCD Application Team
* @version V1.1.1
* @date 12-May-2017
* @brief TIM LL module driver.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
#if defined(USE_FULL_LL_DRIVER)
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_ll_tim.h"
#include "stm32f1xx_ll_bus.h"
#ifdef USE_FULL_ASSERT
#include "stm32_assert.h"
#else
#define assert_param(expr) ((void)0U)
#endif
/** @addtogroup STM32F1xx_LL_Driver
* @{
*/
#if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined (TIM9) || defined (TIM10) || defined (TIM11) || defined (TIM12) || defined (TIM13) || defined (TIM14) || defined (TIM15) || defined (TIM16) || defined (TIM17)
/** @addtogroup TIM_LL
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup TIM_LL_Private_Macros
* @{
*/
#define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
|| ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
|| ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
|| ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
|| ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))
#define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
|| ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
|| ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))
#define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
|| ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
|| ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
|| ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
|| ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
|| ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
|| ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
|| ((__VALUE__) == LL_TIM_OCMODE_PWM2))
#define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
|| ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))
#define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
|| ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))
#define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
|| ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))
#define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
|| ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
|| ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))
#define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
|| ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
|| ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
|| ((__VALUE__) == LL_TIM_ICPSC_DIV8))
#define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
|| ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
|| ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
|| ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
|| ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
|| ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
|| ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
|| ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
|| ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
|| ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
|| ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
|| ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
|| ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
|| ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
|| ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
|| ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))
#define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
|| ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
#define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
|| ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
|| ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12))
#define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
|| ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
#define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
|| ((__VALUE__) == LL_TIM_OSSR_ENABLE))
#define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
|| ((__VALUE__) == LL_TIM_OSSI_ENABLE))
#define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
|| ((__VALUE__) == LL_TIM_LOCKLEVEL_1) \
|| ((__VALUE__) == LL_TIM_LOCKLEVEL_2) \
|| ((__VALUE__) == LL_TIM_LOCKLEVEL_3))
#define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
|| ((__VALUE__) == LL_TIM_BREAK_ENABLE))
#define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
|| ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))
#define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
|| ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup TIM_LL_Private_Functions TIM Private Functions
* @{
*/
static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup TIM_LL_Exported_Functions
* @{
*/
/** @addtogroup TIM_LL_EF_Init
* @{
*/
/**
* @brief Set TIMx registers to their reset values.
* @param TIMx Timer instance
* @retval An ErrorStatus enumeration value:
* - SUCCESS: TIMx registers are de-initialized
* - ERROR: invalid TIMx instance
*/
ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx)
{
ErrorStatus result = SUCCESS;
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(TIMx));
if (TIMx == TIM2)
{
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2);
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2);
}
#if defined(TIM1)
else if (TIMx == TIM1)
{
LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1);
LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1);
}
#endif
#if defined(TIM3)
else if (TIMx == TIM3)
{
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3);
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3);
}
#endif
#if defined(TIM4)
else if (TIMx == TIM4)
{
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM4);
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM4);
}
#endif
#if defined(TIM5)
else if (TIMx == TIM5)
{
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM5);
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM5);
}
#endif
#if defined(TIM6)
else if (TIMx == TIM6)
{
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6);
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6);
}
#endif
#if defined (TIM7)
else if (TIMx == TIM7)
{
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7);
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7);
}
#endif
#if defined(TIM8)
else if (TIMx == TIM8)
{
LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM8);
LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM8);
}
#endif
#if defined(TIM9)
else if (TIMx == TIM9)
{
LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM9);
LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM9);
}
#endif
#if defined(TIM10)
else if (TIMx == TIM10)
{
LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM10);
LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM10);
}
#endif
#if defined(TIM11)
else if (TIMx == TIM11)
{
LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM11);
LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM11);
}
#endif
#if defined(TIM12)
else if (TIMx == TIM12)
{
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM12);
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM12);
}
#endif
#if defined(TIM13)
else if (TIMx == TIM13)
{
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM13);
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM13);
}
#endif
#if defined(TIM14)
else if (TIMx == TIM14)
{
LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM14);
LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM14);
}
#endif
#if defined(TIM15)
else if (TIMx == TIM15)
{
LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM15);
LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM15);
}
#endif
#if defined(TIM16)
else if (TIMx == TIM16)
{
LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM16);
LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM16);
}
#endif
#if defined(TIM17)
else if (TIMx == TIM17)
{
LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM17);
LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM17);
}
#endif
else
{
result = ERROR;
}
return result;
}
/**
* @brief Set the fields of the time base unit configuration data structure
* to their default values.
* @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
* @retval None
*/
void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct)
{
/* Set the default configuration */
TIM_InitStruct->Prescaler = (uint16_t)0x0000;
TIM_InitStruct->CounterMode = LL_TIM_COUNTERMODE_UP;
TIM_InitStruct->Autoreload = 0xFFFFFFFFU;
TIM_InitStruct->ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
TIM_InitStruct->RepetitionCounter = (uint8_t)0x00;
}
/**
* @brief Configure the TIMx time base unit.
* @param TIMx Timer Instance
* @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (TIMx time base unit configuration data structure)
* @retval An ErrorStatus enumeration value:
* - SUCCESS: TIMx registers are de-initialized
* - ERROR: not applicable
*/
ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, LL_TIM_InitTypeDef *TIM_InitStruct)
{
uint32_t tmpcr1 = 0U;
/* Check the parameters */
assert_param(IS_TIM_INSTANCE(TIMx));
assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode));
assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision));
tmpcr1 = LL_TIM_ReadReg(TIMx, CR1);
if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
{
/* Select the Counter Mode */
MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode);
}
if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
{
/* Set the clock division */
MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision);
}
/* Write to TIMx CR1 */
LL_TIM_WriteReg(TIMx, CR1, tmpcr1);
/* Set the Autoreload value */
LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload);
/* Set the Prescaler value */
LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler);
if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
{
/* Set the Repetition Counter value */
LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter);
}
/* Generate an update event to reload the Prescaler
and the repetition counter value (if applicable) immediately */
LL_TIM_GenerateEvent_UPDATE(TIMx);
return SUCCESS;
}
/**
* @brief Set the fields of the TIMx output channel configuration data
* structure to their default values.
* @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (the output channel configuration data structure)
* @retval None
*/
void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
{
/* Set the default configuration */
TIM_OC_InitStruct->OCMode = LL_TIM_OCMODE_FROZEN;
TIM_OC_InitStruct->OCState = LL_TIM_OCSTATE_DISABLE;
TIM_OC_InitStruct->OCNState = LL_TIM_OCSTATE_DISABLE;
TIM_OC_InitStruct->CompareValue = 0x00000000U;
TIM_OC_InitStruct->OCPolarity = LL_TIM_OCPOLARITY_HIGH;
TIM_OC_InitStruct->OCNPolarity = LL_TIM_OCPOLARITY_HIGH;
TIM_OC_InitStruct->OCIdleState = LL_TIM_OCIDLESTATE_LOW;
TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
}
/**
* @brief Configure the TIMx output channel.
* @param TIMx Timer Instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration data structure)
* @retval An ErrorStatus enumeration value:
* - SUCCESS: TIMx output channel is initialized
* - ERROR: TIMx output channel is not initialized
*/
ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
{
ErrorStatus result = ERROR;
switch (Channel)
{
case LL_TIM_CHANNEL_CH1:
result = OC1Config(TIMx, TIM_OC_InitStruct);
break;
case LL_TIM_CHANNEL_CH2:
result = OC2Config(TIMx, TIM_OC_InitStruct);
break;
case LL_TIM_CHANNEL_CH3:
result = OC3Config(TIMx, TIM_OC_InitStruct);
break;
case LL_TIM_CHANNEL_CH4:
result = OC4Config(TIMx, TIM_OC_InitStruct);
break;
default:
break;
}
return result;
}
/**
* @brief Set the fields of the TIMx input channel configuration data
* structure to their default values.
* @param TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration data structure)
* @retval None
*/
void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
{
/* Set the default configuration */
TIM_ICInitStruct->ICPolarity = LL_TIM_IC_POLARITY_RISING;
TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
TIM_ICInitStruct->ICPrescaler = LL_TIM_ICPSC_DIV1;
TIM_ICInitStruct->ICFilter = LL_TIM_IC_FILTER_FDIV1;
}
/**
* @brief Configure the TIMx input channel.
* @param TIMx Timer Instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_TIM_CHANNEL_CH1
* @arg @ref LL_TIM_CHANNEL_CH2
* @arg @ref LL_TIM_CHANNEL_CH3
* @arg @ref LL_TIM_CHANNEL_CH4
* @param TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data structure)
* @retval An ErrorStatus enumeration value:
* - SUCCESS: TIMx output channel is initialized
* - ERROR: TIMx output channel is not initialized
*/
ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct)
{
ErrorStatus result = ERROR;
switch (Channel)
{
case LL_TIM_CHANNEL_CH1:
result = IC1Config(TIMx, TIM_IC_InitStruct);
break;
case LL_TIM_CHANNEL_CH2:
result = IC2Config(TIMx, TIM_IC_InitStruct);
break;
case LL_TIM_CHANNEL_CH3:
result = IC3Config(TIMx, TIM_IC_InitStruct);
break;
case LL_TIM_CHANNEL_CH4:
result = IC4Config(TIMx, TIM_IC_InitStruct);
break;
default:
break;
}
return result;
}
/**
* @brief Fills each TIM_EncoderInitStruct field with its default value
* @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface configuration data structure)
* @retval None
*/
void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
{
/* Set the default configuration */
TIM_EncoderInitStruct->EncoderMode = LL_TIM_ENCODERMODE_X2_TI1;
TIM_EncoderInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING;
TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
TIM_EncoderInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1;
TIM_EncoderInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1;
TIM_EncoderInitStruct->IC2Polarity = LL_TIM_IC_POLARITY_RISING;
TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
TIM_EncoderInitStruct->IC2Prescaler = LL_TIM_ICPSC_DIV1;
TIM_EncoderInitStruct->IC2Filter = LL_TIM_IC_FILTER_FDIV1;
}
/**
* @brief Configure the encoder interface of the timer instance.
* @param TIMx Timer Instance
* @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface configuration data structure)
* @retval An ErrorStatus enumeration value:
* - SUCCESS: TIMx registers are de-initialized
* - ERROR: not applicable
*/
ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
{
uint32_t tmpccmr1 = 0U;
uint32_t tmpccer = 0U;
/* Check the parameters */
assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx));
assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode));
assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity));
assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput));
assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler));
assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter));
assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity));
assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput));
assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler));
assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter));
/* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
/* Get the TIMx CCMR1 register value */
tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
/* Get the TIMx CCER register value */
tmpccer = LL_TIM_ReadReg(TIMx, CCER);
/* Configure TI1 */
tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC);
tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U);
tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U);
tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U);
/* Configure TI2 */
tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC);
tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U);
tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U);
tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U);
/* Set TI1 and TI2 polarity and enable TI1 and TI2 */
tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity);
tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U);
tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
/* Set encoder mode */
LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode);
/* Write to TIMx CCMR1 */
LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
/* Write to TIMx CCER */
LL_TIM_WriteReg(TIMx, CCER, tmpccer);
return SUCCESS;
}
/**
* @brief Set the fields of the TIMx Hall sensor interface configuration data
* structure to their default values.
* @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface configuration data structure)
* @retval None
*/
void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
{
/* Set the default configuration */
TIM_HallSensorInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING;
TIM_HallSensorInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1;
TIM_HallSensorInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1;
TIM_HallSensorInitStruct->CommutationDelay = 0U;
}
/**
* @brief Configure the Hall sensor interface of the timer instance.
* @note TIMx CH1, CH2 and CH3 inputs connected through a XOR
* to the TI1 input channel
* @note TIMx slave mode controller is configured in reset mode.
Selected internal trigger is TI1F_ED.
* @note Channel 1 is configured as input, IC1 is mapped on TRC.
* @note Captured value stored in TIMx_CCR1 correspond to the time elapsed
* between 2 changes on the inputs. It gives information about motor speed.
* @note Channel 2 is configured in output PWM 2 mode.
* @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay.
* @note OC2REF is selected as trigger output on TRGO.
* @param TIMx Timer Instance
* @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor interface configuration data structure)
* @retval An ErrorStatus enumeration value:
* - SUCCESS: TIMx registers are de-initialized
* - ERROR: not applicable
*/
ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
{
uint32_t tmpcr2 = 0U;
uint32_t tmpccmr1 = 0U;
uint32_t tmpccer = 0U;
uint32_t tmpsmcr = 0U;
/* Check the parameters */
assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx));
assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity));
assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler));
assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter));
/* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
/* Get the TIMx CR2 register value */
tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
/* Get the TIMx CCMR1 register value */
tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
/* Get the TIMx CCER register value */
tmpccer = LL_TIM_ReadReg(TIMx, CCER);
/* Get the TIMx SMCR register value */
tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR);
/* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */
tmpcr2 |= TIM_CR2_TI1S;
/* OC2REF signal is used as trigger output (TRGO) */
tmpcr2 |= LL_TIM_TRGO_OC2REF;
/* Configure the slave mode controller */
tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS);
tmpsmcr |= LL_TIM_TS_TI1F_ED;
tmpsmcr |= LL_TIM_SLAVEMODE_RESET;
/* Configure input channel 1 */
tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC);
tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U);
tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U);
tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U);
/* Configure input channel 2 */
tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE | TIM_CCMR1_OC2PE | TIM_CCMR1_OC2CE);
tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U);
/* Set Channel 1 polarity and enable Channel 1 and Channel2 */
tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity);
tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
/* Write to TIMx CR2 */
LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
/* Write to TIMx SMCR */
LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr);
/* Write to TIMx CCMR1 */
LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
/* Write to TIMx CCER */
LL_TIM_WriteReg(TIMx, CCER, tmpccer);
/* Write to TIMx CCR2 */
LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay);
return SUCCESS;
}
/**
* @brief Set the fields of the Break and Dead Time configuration data structure
* to their default values.
* @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure)
* @retval None
*/
void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
{
/* Set the default configuration */
TIM_BDTRInitStruct->OSSRState = LL_TIM_OSSR_DISABLE;
TIM_BDTRInitStruct->OSSIState = LL_TIM_OSSI_DISABLE;
TIM_BDTRInitStruct->LockLevel = LL_TIM_LOCKLEVEL_OFF;
TIM_BDTRInitStruct->DeadTime = (uint8_t)0x00;
TIM_BDTRInitStruct->BreakState = LL_TIM_BREAK_DISABLE;
TIM_BDTRInitStruct->BreakPolarity = LL_TIM_BREAK_POLARITY_LOW;
TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
}
/**
* @brief Configure the Break and Dead Time feature of the timer instance.
* @note As the bits AOE, BKP, BKE, OSSR, OSSI and DTG[7:0] can be write-locked
* depending on the LOCK configuration, it can be necessary to configure all of
* them during the first write access to the TIMx_BDTR register.
* @note Macro @ref IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
* a timer instance provides a break input.
* @param TIMx Timer Instance
* @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure(Break and Dead Time configuration data structure)
* @retval An ErrorStatus enumeration value:
* - SUCCESS: Break and Dead Time is initialized
* - ERROR: not applicable
*/
ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
{
uint32_t tmpbdtr = 0;
/* Check the parameters */
assert_param(IS_TIM_BREAK_INSTANCE(TIMx));
assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState));
assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState));
assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel));
assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState));
assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity));
assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput));
/* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
the OSSI State, the dead time value and the Automatic Output Enable Bit */
/* Set the BDTR bits */
MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime);
MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel);
MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState);
MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState);
MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState);
MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity);
MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput);
MODIFY_REG(tmpbdtr, TIM_BDTR_MOE, TIM_BDTRInitStruct->AutomaticOutput);
/* Set TIMx_BDTR */
LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr);
return SUCCESS;
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup TIM_LL_Private_Functions TIM Private Functions
* @brief Private functions
* @{
*/
/**
* @brief Configure the TIMx output channel 1.
* @param TIMx Timer Instance
* @param TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
* @retval An ErrorStatus enumeration value:
* - SUCCESS: TIMx registers are de-initialized
* - ERROR: not applicable
*/
static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
{
uint32_t tmpccmr1 = 0U;
uint32_t tmpccer = 0U;
uint32_t tmpcr2 = 0U;
/* Check the parameters */
assert_param(IS_TIM_CC1_INSTANCE(TIMx));
assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
/* Disable the Channel 1: Reset the CC1E Bit */
CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E);
/* Get the TIMx CCER register value */
tmpccer = LL_TIM_ReadReg(TIMx, CCER);
/* Get the TIMx CR2 register value */
tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
/* Get the TIMx CCMR1 register value */
tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
/* Reset Capture/Compare selection Bits */
CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S);
/* Set the Output Compare Mode */
MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode);
/* Set the Output Compare Polarity */
MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity);
/* Set the Output State */
MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState);
if (IS_TIM_BREAK_INSTANCE(TIMx))
{
assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
/* Set the complementary output Polarity */
MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U);
/* Set the complementary output State */
MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U);
/* Set the Output Idle state */
MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState);
/* Set the complementary output Idle state */
MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U);
}
/* Write to TIMx CR2 */
LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
/* Write to TIMx CCMR1 */
LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
/* Set the Capture Compare Register value */
LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue);
/* Write to TIMx CCER */
LL_TIM_WriteReg(TIMx, CCER, tmpccer);
return SUCCESS;
}
/**
* @brief Configure the TIMx output channel 2.
* @param TIMx Timer Instance
* @param TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
* @retval An ErrorStatus enumeration value:
* - SUCCESS: TIMx registers are de-initialized
* - ERROR: not applicable
*/
static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
{
uint32_t tmpccmr1 = 0U;
uint32_t tmpccer = 0U;
uint32_t tmpcr2 = 0U;
/* Check the parameters */
assert_param(IS_TIM_CC2_INSTANCE(TIMx));
assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
/* Disable the Channel 2: Reset the CC2E Bit */
CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E);
/* Get the TIMx CCER register value */
tmpccer = LL_TIM_ReadReg(TIMx, CCER);
/* Get the TIMx CR2 register value */
tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
/* Get the TIMx CCMR1 register value */
tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
/* Reset Capture/Compare selection Bits */
CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S);
/* Select the Output Compare Mode */
MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U);
/* Set the Output Compare Polarity */
MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U);
/* Set the Output State */
MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U);
if (IS_TIM_BREAK_INSTANCE(TIMx))
{
assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
/* Set the complementary output Polarity */
MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U);
/* Set the complementary output State */
MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U);
/* Set the Output Idle state */
MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U);
/* Set the complementary output Idle state */
MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U);
}
/* Write to TIMx CR2 */
LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
/* Write to TIMx CCMR1 */
LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
/* Set the Capture Compare Register value */
LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue);
/* Write to TIMx CCER */
LL_TIM_WriteReg(TIMx, CCER, tmpccer);
return SUCCESS;
}
/**
* @brief Configure the TIMx output channel 3.
* @param TIMx Timer Instance
* @param TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
* @retval An ErrorStatus enumeration value:
* - SUCCESS: TIMx registers are de-initialized
* - ERROR: not applicable
*/
static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
{
uint32_t tmpccmr2 = 0U;
uint32_t tmpccer = 0U;
uint32_t tmpcr2 = 0U;
/* Check the parameters */
assert_param(IS_TIM_CC3_INSTANCE(TIMx));
assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
/* Disable the Channel 3: Reset the CC3E Bit */
CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E);
/* Get the TIMx CCER register value */
tmpccer = LL_TIM_ReadReg(TIMx, CCER);
/* Get the TIMx CR2 register value */
tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
/* Get the TIMx CCMR2 register value */
tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
/* Reset Capture/Compare selection Bits */
CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S);
/* Select the Output Compare Mode */
MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode);
/* Set the Output Compare Polarity */
MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U);
/* Set the Output State */
MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U);
if (IS_TIM_BREAK_INSTANCE(TIMx))
{
assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
/* Set the complementary output Polarity */
MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U);
/* Set the complementary output State */
MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U);
/* Set the Output Idle state */
MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U);
/* Set the complementary output Idle state */
MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U);
}
/* Write to TIMx CR2 */
LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
/* Write to TIMx CCMR2 */
LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
/* Set the Capture Compare Register value */
LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue);
/* Write to TIMx CCER */
LL_TIM_WriteReg(TIMx, CCER, tmpccer);
return SUCCESS;
}
/**
* @brief Configure the TIMx output channel 4.
* @param TIMx Timer Instance
* @param TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
* @retval An ErrorStatus enumeration value:
* - SUCCESS: TIMx registers are de-initialized
* - ERROR: not applicable
*/
static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
{
uint32_t tmpccmr2 = 0U;
uint32_t tmpccer = 0U;
uint32_t tmpcr2 = 0U;
/* Check the parameters */
assert_param(IS_TIM_CC4_INSTANCE(TIMx));
assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
/* Disable the Channel 4: Reset the CC4E Bit */
CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E);
/* Get the TIMx CCER register value */
tmpccer = LL_TIM_ReadReg(TIMx, CCER);
/* Get the TIMx CR2 register value */
tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
/* Get the TIMx CCMR2 register value */
tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
/* Reset Capture/Compare selection Bits */
CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S);
/* Select the Output Compare Mode */
MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U);
/* Set the Output Compare Polarity */
MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U);
/* Set the Output State */
MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U);
if (IS_TIM_BREAK_INSTANCE(TIMx))
{
assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
/* Set the Output Idle state */
MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U);
}
/* Write to TIMx CR2 */
LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
/* Write to TIMx CCMR2 */
LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
/* Set the Capture Compare Register value */
LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue);
/* Write to TIMx CCER */
LL_TIM_WriteReg(TIMx, CCER, tmpccer);
return SUCCESS;
}
/**
* @brief Configure the TIMx input channel 1.
* @param TIMx Timer Instance
* @param TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
* @retval An ErrorStatus enumeration value:
* - SUCCESS: TIMx registers are de-initialized
* - ERROR: not applicable
*/
static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
{
/* Check the parameters */
assert_param(IS_TIM_CC1_INSTANCE(TIMx));
assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
/* Disable the Channel 1: Reset the CC1E Bit */
TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;
/* Select the Input and set the filter and the prescaler value */
MODIFY_REG(TIMx->CCMR1,
(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC),
(TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
/* Select the Polarity and set the CC1E Bit */
MODIFY_REG(TIMx->CCER,
(TIM_CCER_CC1P | TIM_CCER_CC1NP),
(TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E));
return SUCCESS;
}
/**
* @brief Configure the TIMx input channel 2.
* @param TIMx Timer Instance
* @param TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
* @retval An ErrorStatus enumeration value:
* - SUCCESS: TIMx registers are de-initialized
* - ERROR: not applicable
*/
static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
{
/* Check the parameters */
assert_param(IS_TIM_CC2_INSTANCE(TIMx));
assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
/* Disable the Channel 2: Reset the CC2E Bit */
TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E;
/* Select the Input and set the filter and the prescaler value */
MODIFY_REG(TIMx->CCMR1,
(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC),
(TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
/* Select the Polarity and set the CC2E Bit */
MODIFY_REG(TIMx->CCER,
(TIM_CCER_CC2P | TIM_CCER_CC2NP),
((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E));
return SUCCESS;
}
/**
* @brief Configure the TIMx input channel 3.
* @param TIMx Timer Instance
* @param TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
* @retval An ErrorStatus enumeration value:
* - SUCCESS: TIMx registers are de-initialized
* - ERROR: not applicable
*/
static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
{
/* Check the parameters */
assert_param(IS_TIM_CC3_INSTANCE(TIMx));
assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
/* Disable the Channel 3: Reset the CC3E Bit */
TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E;
/* Select the Input and set the filter and the prescaler value */
MODIFY_REG(TIMx->CCMR2,
(TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC),
(TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
/* Select the Polarity and set the CC3E Bit */
MODIFY_REG(TIMx->CCER,
(TIM_CCER_CC3P | TIM_CCER_CC3NP),
((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E));
return SUCCESS;
}
/**
* @brief Configure the TIMx input channel 4.
* @param TIMx Timer Instance
* @param TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
* @retval An ErrorStatus enumeration value:
* - SUCCESS: TIMx registers are de-initialized
* - ERROR: not applicable
*/
static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
{
/* Check the parameters */
assert_param(IS_TIM_CC4_INSTANCE(TIMx));
assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
/* Disable the Channel 4: Reset the CC4E Bit */
TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E;
/* Select the Input and set the filter and the prescaler value */
MODIFY_REG(TIMx->CCMR2,
(TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC),
(TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
/* Select the Polarity and set the CC4E Bit */
MODIFY_REG(TIMx->CCER,
TIM_CCER_CC4P,
((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));
return SUCCESS;
}
/**
* @}
*/
/**
* @}
*/
#endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM9 || TIM10 || TIM11 || TIM12 || TIM13 || TIM14 || TIM15 || TIM16 || TIM17 */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/