# Multi-processor safe interface to micro-controller # # Copyright (C) 2016 Kevin O'Connor # # This file may be distributed under the terms of the GNU GPLv3 license. import sys, zlib, logging, math import serialhdl, pins, chelper class error(Exception): pass def parse_pin_extras(pin, can_pullup=False): pullup = invert = 0 if can_pullup and pin.startswith('^'): pullup = 1 pin = pin[1:].strip() if pin.startswith('!'): invert = 1 pin = pin[1:].strip() return pin, pullup, invert STEPCOMPRESS_ERROR_RET = -989898989 class MCU_stepper: def __init__(self, mcu, step_pin, dir_pin): self._mcu = mcu self._oid = mcu.create_oid(self) self._step_pin, pullup, self._invert_step = parse_pin_extras(step_pin) self._dir_pin, pullup, self._invert_dir = parse_pin_extras(dir_pin) self.commanded_position = 0 self._step_dist = self._inv_step_dist = 1. self._velocity_factor = self._inv_accel_factor = 0. self._mcu_position_offset = 0 self._mcu_freq = self._min_stop_interval = 0. self._reset_cmd = self._get_position_cmd = None self._ffi_lib = self._stepqueue = None self.print_to_mcu_time = mcu.print_to_mcu_time def set_min_stop_interval(self, min_stop_interval): self._min_stop_interval = min_stop_interval def set_step_distance(self, step_dist): self._step_dist = step_dist self._inv_step_dist = 1. / step_dist def build_config(self): self._mcu_freq = self._mcu.get_mcu_freq() self._velocity_factor = 1. / (self._mcu_freq * self._step_dist) self._inv_accel_factor = self._mcu_freq**2 * self._step_dist max_error = self._mcu.get_max_stepper_error() min_stop_interval = max(0., self._min_stop_interval - max_error) self._mcu.add_config_cmd( "config_stepper oid=%d step_pin=%s dir_pin=%s" " min_stop_interval=TICKS(%.9f) invert_step=%d" % ( self._oid, self._step_pin, self._dir_pin, min_stop_interval, self._invert_step)) self._mcu.register_stepper(self) step_cmd = self._mcu.lookup_command( "queue_step oid=%c interval=%u count=%hu add=%hi") dir_cmd = self._mcu.lookup_command( "set_next_step_dir oid=%c dir=%c") self._reset_cmd = self._mcu.lookup_command( "reset_step_clock oid=%c clock=%u") self._get_position_cmd = self._mcu.lookup_command( "stepper_get_position oid=%c") ffi_main, self._ffi_lib = chelper.get_ffi() max_error = int(max_error * self._mcu_freq) self._stepqueue = ffi_main.gc(self._ffi_lib.stepcompress_alloc( max_error, step_cmd.msgid, dir_cmd.msgid, self._invert_dir, self._oid), self._ffi_lib.stepcompress_free) def get_oid(self): return self._oid def set_position(self, pos): self._mcu_position_offset += self.commanded_position - pos self.commanded_position = pos def get_mcu_position(self): return self.commanded_position + self._mcu_position_offset def note_homing_start(self, homing_clock): ret = self._ffi_lib.stepcompress_set_homing( self._stepqueue, homing_clock) if ret: raise error("Internal error in stepcompress") def note_homing_finalized(self): ret = self._ffi_lib.stepcompress_set_homing(self._stepqueue, 0) if ret: raise error("Internal error in stepcompress") ret = self._ffi_lib.stepcompress_reset(self._stepqueue, 0) if ret: raise error("Internal error in stepcompress") def note_homing_triggered(self): params = self._mcu.serial.send_with_response( self._get_position_cmd.encode(self._oid), 'stepper_position', self._oid) pos = params['pos'] if self._invert_dir: pos = -pos self._mcu_position_offset = pos - self.commanded_position def reset_step_clock(self, mcu_time): clock = int(mcu_time * self._mcu_freq) ret = self._ffi_lib.stepcompress_reset(self._stepqueue, clock) if ret: raise error("Internal error in stepcompress") data = (self._reset_cmd.msgid, self._oid, clock & 0xffffffff) ret = self._ffi_lib.stepcompress_queue_msg( self._stepqueue, data, len(data)) if ret: raise error("Internal error in stepcompress") def step(self, mcu_time, sdir): clock = mcu_time * self._mcu_freq ret = self._ffi_lib.stepcompress_push(self._stepqueue, clock, sdir) if ret: raise error("Internal error in stepcompress") if sdir: self.commanded_position += 1 else: self.commanded_position -= 1 def step_const(self, mcu_time, start_pos, dist, cruise_v): #t = pos/cruise_v inv_step_dist = self._inv_step_dist step_offset = self.commanded_position - start_pos * inv_step_dist steps = dist * inv_step_dist count = self._ffi_lib.stepcompress_push_factor( self._stepqueue, steps, step_offset, mcu_time * self._mcu_freq, 1. / (cruise_v * self._velocity_factor)) if count == STEPCOMPRESS_ERROR_RET: raise error("Internal error in stepcompress") self.commanded_position += count def step_accel(self, mcu_time, start_pos, dist, start_v, accel): #t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel inv_step_dist = self._inv_step_dist mcu_freq = self._mcu_freq inv_accel = 1. / accel time_offset = start_v * inv_accel * mcu_freq sqrt_offset = time_offset**2 step_offset = self.commanded_position - start_pos * inv_step_dist steps = dist * inv_step_dist clock = mcu_time * mcu_freq - time_offset count = self._ffi_lib.stepcompress_push_sqrt( self._stepqueue, steps, step_offset, clock, sqrt_offset, 2. * inv_accel * self._inv_accel_factor) if count == STEPCOMPRESS_ERROR_RET: raise error("Internal error in stepcompress") self.commanded_position += count def step_delta_const(self, mcu_time, dist, start_pos , inv_velocity, step_dist , height, closestxy_d, closest_height2, movez_r): clock = mcu_time * self._mcu_freq count = self._ffi_lib.stepcompress_push_delta_const( self._stepqueue, clock, dist, start_pos , inv_velocity * self._mcu_freq, step_dist , height, closestxy_d, closest_height2, movez_r) if count == STEPCOMPRESS_ERROR_RET: raise error("Internal error in stepcompress") self.commanded_position += count return count def step_delta_accel(self, mcu_time, dist, start_pos , accel_multiplier, step_dist , height, closestxy_d, closest_height2, movez_r): clock = mcu_time * self._mcu_freq mcu_freq2 = self._mcu_freq**2 count = self._ffi_lib.stepcompress_push_delta_accel( self._stepqueue, clock, dist, start_pos , accel_multiplier * mcu_freq2, step_dist , height, closestxy_d, closest_height2, movez_r) if count == STEPCOMPRESS_ERROR_RET: raise error("Internal error in stepcompress") self.commanded_position += count return count class MCU_endstop: error = error RETRY_QUERY = 1.000 def __init__(self, mcu, pin): self._mcu = mcu self._oid = mcu.create_oid(self) self._steppers = [] self._pin, self._pullup, self._invert = parse_pin_extras( pin, can_pullup=True) self._cmd_queue = mcu.alloc_command_queue() self._home_cmd = self._query_cmd = None self._homing = False self._min_query_time = self._mcu_freq = 0. self._next_query_clock = self._home_timeout_clock = 0 self._retry_query_ticks = 0 self._last_state = {} mcu.add_init_callback(self._init_callback) self.print_to_mcu_time = mcu.print_to_mcu_time def add_stepper(self, stepper): self._steppers.append(stepper) def build_config(self): self._mcu_freq = self._mcu.get_mcu_freq() self._mcu.add_config_cmd( "config_end_stop oid=%d pin=%s pull_up=%d stepper_count=%d" % ( self._oid, self._pin, self._pullup, len(self._steppers))) self._retry_query_ticks = int(self._mcu_freq * self.RETRY_QUERY) self._home_cmd = self._mcu.lookup_command( "end_stop_home oid=%c clock=%u rest_ticks=%u pin_value=%c") self._query_cmd = self._mcu.lookup_command("end_stop_query oid=%c") self._mcu.register_msg(self._handle_end_stop_state, "end_stop_state" , self._oid) def _init_callback(self): set_cmd = self._mcu.lookup_command( "end_stop_set_stepper oid=%c pos=%c stepper_oid=%c") for i, s in enumerate(self._steppers): msg = set_cmd.encode(self._oid, i, s.get_oid()) self._mcu.send(msg, cq=self._cmd_queue) def home_start(self, mcu_time, rest_time): clock = int(mcu_time * self._mcu_freq) rest_ticks = int(rest_time * self._mcu_freq) self._homing = True self._min_query_time = self._mcu.monotonic() self._next_query_clock = clock + self._retry_query_ticks msg = self._home_cmd.encode( self._oid, clock, rest_ticks, 1 ^ self._invert) self._mcu.send(msg, reqclock=clock, cq=self._cmd_queue) for s in self._steppers: s.note_homing_start(clock) def home_finalize(self, mcu_time): for s in self._steppers: s.note_homing_finalized() self._home_timeout_clock = int(mcu_time * self._mcu_freq) def home_wait(self): eventtime = self._mcu.monotonic() while self._check_busy(eventtime): eventtime = self._mcu.pause(eventtime + 0.1) def _handle_end_stop_state(self, params): logging.debug("end_stop_state %s" % (params,)) self._last_state = params def _check_busy(self, eventtime): # Check if need to send an end_stop_query command if self._mcu.is_fileoutput(): return False last_sent_time = self._last_state.get('#sent_time', -1.) if last_sent_time >= self._min_query_time: if not self._homing: return False if not self._last_state.get('homing', 0): for s in self._steppers: s.note_homing_triggered() self._homing = False return False if (self._mcu.serial.get_clock(last_sent_time) > self._home_timeout_clock): # Timeout - disable endstop checking msg = self._home_cmd.encode(self._oid, 0, 0, 0) self._mcu.send(msg, reqclock=0, cq=self._cmd_queue) raise error("Timeout during endstop homing") if self._mcu.is_shutdown: raise error("MCU is shutdown") last_clock, last_clock_time = self._mcu.get_last_clock() if last_clock >= self._next_query_clock: self._next_query_clock = last_clock + self._retry_query_ticks msg = self._query_cmd.encode(self._oid) self._mcu.send(msg, cq=self._cmd_queue) return True def query_endstop(self, mcu_time): clock = int(mcu_time * self._mcu_freq) self._homing = False self._min_query_time = self._mcu.monotonic() self._next_query_clock = clock def query_endstop_wait(self): eventtime = self._mcu.monotonic() while self._check_busy(eventtime): eventtime = self._mcu.pause(eventtime + 0.1) return self._last_state.get('pin', self._invert) ^ self._invert class MCU_digital_out: def __init__(self, mcu, pin, max_duration): self._mcu = mcu self._oid = mcu.create_oid(self) pin, pullup, self._invert = parse_pin_extras(pin) self._last_clock = 0 self._last_value = None self._mcu_freq = 0. self._cmd_queue = mcu.alloc_command_queue() mcu.add_config_cmd( "config_digital_out oid=%d pin=%s default_value=%d" " max_duration=TICKS(%f)" % ( self._oid, pin, self._invert, max_duration)) self._set_cmd = None self.print_to_mcu_time = mcu.print_to_mcu_time def build_config(self): self._mcu_freq = self._mcu.get_mcu_freq() self._set_cmd = self._mcu.lookup_command( "schedule_digital_out oid=%c clock=%u value=%c") def set_digital(self, mcu_time, value): clock = int(mcu_time * self._mcu_freq) msg = self._set_cmd.encode(self._oid, clock, value ^ self._invert) self._mcu.send(msg, minclock=self._last_clock, reqclock=clock , cq=self._cmd_queue) self._last_clock = clock self._last_value = value def get_last_setting(self): return self._last_value def set_pwm(self, mcu_time, value): dval = 0 if value >= 0.5: dval = 1 self.set_digital(mcu_time, dval) class MCU_pwm: PWM_MAX = 255. def __init__(self, mcu, pin, cycle_time, hard_cycle_ticks, max_duration): self._mcu = mcu self._hard_cycle_ticks = hard_cycle_ticks self._oid = mcu.create_oid(self) pin, pullup, self._invert = parse_pin_extras(pin) self._last_clock = 0 self._mcu_freq = 0. self._cmd_queue = mcu.alloc_command_queue() if hard_cycle_ticks: mcu.add_config_cmd( "config_pwm_out oid=%d pin=%s cycle_ticks=%d default_value=%d" " max_duration=TICKS(%f)" % ( self._oid, pin, hard_cycle_ticks, self._invert, max_duration)) else: mcu.add_config_cmd( "config_soft_pwm_out oid=%d pin=%s cycle_ticks=TICKS(%f)" " default_value=%d max_duration=TICKS(%f)" % ( self._oid, pin, cycle_time, self._invert, max_duration)) self._set_cmd = None self.print_to_mcu_time = mcu.print_to_mcu_time def build_config(self): self._mcu_freq = self._mcu.get_mcu_freq() if self._hard_cycle_ticks: self._set_cmd = self._mcu.lookup_command( "schedule_pwm_out oid=%c clock=%u value=%c") else: self._set_cmd = self._mcu.lookup_command( "schedule_soft_pwm_out oid=%c clock=%u value=%c") def set_pwm(self, mcu_time, value): clock = int(mcu_time * self._mcu_freq) if self._invert: value = 1. - value value = int(value * self.PWM_MAX + 0.5) msg = self._set_cmd.encode(self._oid, clock, value) self._mcu.send(msg, minclock=self._last_clock, reqclock=clock , cq=self._cmd_queue) self._last_clock = clock class MCU_adc: def __init__(self, mcu, pin): self._mcu = mcu self._oid = mcu.create_oid(self) self._min_sample = self._max_sample = 0. self._sample_time = self._report_time = 0. self._sample_count = 0 self._report_clock = 0 self._callback = None self._inv_max_adc = 0. self._mcu_freq = 0. self._cmd_queue = mcu.alloc_command_queue() mcu.add_config_cmd("config_analog_in oid=%d pin=%s" % (self._oid, pin)) self._query_cmd = None mcu.add_init_callback(self._init_callback) self._query_cmd = None def build_config(self): self._mcu_freq = self._mcu.get_mcu_freq() self._query_cmd = self._mcu.lookup_command( "query_analog_in oid=%c clock=%u sample_ticks=%u sample_count=%c" " rest_ticks=%u min_value=%hu max_value=%hu") def set_minmax(self, sample_time, sample_count, minval=0., maxval=1.): self._sample_time = sample_time self._sample_count = sample_count self._min_sample = minval self._max_sample = maxval def _init_callback(self): if not self._sample_count: return last_clock, last_clock_time = self._mcu.get_last_clock() clock = last_clock + int(self._mcu_freq * (1.0 + self._oid * 0.01)) # XXX sample_ticks = int(self._sample_time * self._mcu_freq) mcu_adc_max = self._mcu.serial.msgparser.get_constant_float("ADC_MAX") max_adc = self._sample_count * mcu_adc_max self._inv_max_adc = 1.0 / max_adc self._report_clock = int(self._report_time * self._mcu_freq) self._mcu.register_msg(self._handle_analog_in_state, "analog_in_state" , self._oid) min_sample = int(self._min_sample * max_adc) max_sample = min(0xffff, int(math.ceil(self._max_sample * max_adc))) msg = self._query_cmd.encode( self._oid, clock, sample_ticks, self._sample_count , self._report_clock, min_sample, max_sample) self._mcu.send(msg, reqclock=clock, cq=self._cmd_queue) def _handle_analog_in_state(self, params): last_value = params['value'] * self._inv_max_adc next_clock = self._mcu.serial.translate_clock(params['next_clock']) last_read_time = (next_clock - self._report_clock) / self._mcu_freq if self._callback is not None: self._callback(last_read_time, last_value) def set_adc_callback(self, report_time, callback): self._report_time = report_time self._callback = callback class MCU: error = error COMM_TIMEOUT = 3.5 def __init__(self, printer, config): self._printer = printer self._config = config # Serial port baud = config.getint('baud', 250000) self._serialport = config.get('serial', '/dev/ttyS0') self.serial = serialhdl.SerialReader( printer.reactor, self._serialport, baud) self.is_shutdown = False self._shutdown_msg = "" self._is_fileoutput = False self._timeout_timer = printer.reactor.register_timer( self.timeout_handler) # Config building self._emergency_stop_cmd = self._clear_shutdown_cmd = None self._oids = [] self._config_cmds = [] self._config_crc = None self._init_callbacks = [] self._pin_map = config.get('pin_map', None) self._custom = config.get('custom', '') # Move command queuing ffi_main, self._ffi_lib = chelper.get_ffi() self._max_stepper_error = config.getfloat('max_stepper_error', 0.000025) self._steppers = [] self._steppersync = None # Print time to clock epoch calculations self._print_start_time = 0. self._mcu_freq = 0. # Stats self._stats_sumsq_base = 0. self._mcu_tick_avg = 0. self._mcu_tick_stddev = 0. def handle_mcu_stats(self, params): logging.debug("mcu stats: %s" % (params,)) count = params['count'] tick_sum = params['sum'] c = 1.0 / (count * self._mcu_freq) self._mcu_tick_avg = tick_sum * c tick_sumsq = params['sumsq'] * self._stats_sumsq_base self._mcu_tick_stddev = c * math.sqrt(count*tick_sumsq - tick_sum**2) def handle_shutdown(self, params): if self.is_shutdown: return self.is_shutdown = True self._shutdown_msg = params['#msg'] logging.info("%s: %s" % (params['#name'], self._shutdown_msg)) self.serial.dump_debug() self._printer.note_shutdown(self._shutdown_msg) # Connection phase def connect(self): if not self._is_fileoutput: self.serial.connect() self._printer.reactor.update_timer( self._timeout_timer, self.monotonic() + self.COMM_TIMEOUT) self._mcu_freq = self.serial.msgparser.get_constant_float('CLOCK_FREQ') self._stats_sumsq_base = self.serial.msgparser.get_constant_float( 'STATS_SUMSQ_BASE') self._emergency_stop_cmd = self.lookup_command("emergency_stop") self._clear_shutdown_cmd = self.lookup_command("clear_shutdown") self.register_msg(self.handle_shutdown, 'shutdown') self.register_msg(self.handle_shutdown, 'is_shutdown') self.register_msg(self.handle_mcu_stats, 'stats') self._build_config() self._send_config() def connect_file(self, debugoutput, dictionary, pace=False): self._is_fileoutput = True self.serial.connect_file(debugoutput, dictionary) if not pace: def dummy_set_print_start_time(eventtime): pass def dummy_get_print_buffer_time(eventtime, last_move_end): return 1.250 self.set_print_start_time = dummy_set_print_start_time self.get_print_buffer_time = dummy_get_print_buffer_time def timeout_handler(self, eventtime): last_clock, last_clock_time = self.serial.get_last_clock() timeout = last_clock_time + self.COMM_TIMEOUT if eventtime < timeout: return timeout logging.info("Timeout with firmware (eventtime=%f last_status=%f)" % ( eventtime, last_clock_time)) self._printer.note_mcu_error("Lost communication with firmware") return self._printer.reactor.NEVER def disconnect(self): self.serial.disconnect() if self._steppersync is not None: self._ffi_lib.steppersync_free(self._steppersync) self._steppersync = None def stats(self, eventtime): return "%s mcu_task_avg=%.06f mcu_task_stddev=%.06f" % ( self.serial.stats(eventtime), self._mcu_tick_avg, self._mcu_tick_stddev) def force_shutdown(self): self.send(self._emergency_stop_cmd.encode()) def clear_shutdown(self): logging.info("Sending clear_shutdown command") self.send(self._clear_shutdown_cmd.encode()) def microcontroller_restart(self): logging.info("Attempting a microcontroller reset") self.disconnect() serialhdl.arduino_reset(self._serialport, self._printer.reactor) def is_fileoutput(self): return self._is_fileoutput # Configuration phase def _add_custom(self): for line in self._custom.split('\n'): line = line.strip() cpos = line.find('#') if cpos >= 0: line = line[:cpos].strip() if not line: continue self.add_config_cmd(line) def _build_config(self): # Build config commands for oid in self._oids: oid.build_config() self._add_custom() self._config_cmds.insert(0, "allocate_oids count=%d" % ( len(self._oids),)) # Resolve pin names mcu = self.serial.msgparser.get_constant('MCU') pnames = pins.get_pin_map(mcu, self._pin_map) updated_cmds = [] for cmd in self._config_cmds: try: updated_cmds.append(pins.update_command( cmd, self._mcu_freq, pnames)) except: raise self._config.error("Unable to translate pin name: %s" % ( cmd,)) self._config_cmds = updated_cmds # Calculate config CRC self._config_crc = zlib.crc32('\n'.join(self._config_cmds)) & 0xffffffff self.add_config_cmd("finalize_config crc=%d" % (self._config_crc,)) def _send_config(self): msg = self.create_command("get_config") if self._is_fileoutput: config_params = { 'is_config': 0, 'move_count': 500, 'crc': self._config_crc} else: config_params = self.serial.send_with_response(msg, 'config') if not config_params['is_config']: # Send config commands logging.info("Sending printer configuration...") for c in self._config_cmds: self.send(self.create_command(c)) if not self._is_fileoutput: config_params = self.serial.send_with_response(msg, 'config') if not config_params['is_config']: if self.is_shutdown: raise error("Firmware error during config: %s" % ( self._shutdown_msg,)) raise error("Unable to configure printer") if self._config_crc != config_params['crc']: if self._printer.get_startup_state() != 'firmware_restart': # Attempt a firmware restart to fix the CRC error logging.info( "Printer CRC mismatch - attempting firmware restart") self._printer.request_exit('firmware_restart') self._printer.reactor.pause(0.100) raise error("Printer CRC does not match config") move_count = config_params['move_count'] logging.info("Configured (%d moves)" % (move_count,)) stepqueues = tuple(s._stepqueue for s in self._steppers) self._steppersync = self._ffi_lib.steppersync_alloc( self.serial.serialqueue, stepqueues, len(stepqueues), move_count) for cb in self._init_callbacks: cb() # Config creation helpers def create_oid(self, oid): self._oids.append(oid) return len(self._oids) - 1 def add_config_cmd(self, cmd): self._config_cmds.append(cmd) def add_init_callback(self, callback): self._init_callbacks.append(callback) def register_msg(self, cb, msg, oid=None): self.serial.register_callback(cb, msg, oid) def register_stepper(self, stepper): self._steppers.append(stepper) def alloc_command_queue(self): return self.serial.alloc_command_queue() def lookup_command(self, msgformat): return self.serial.msgparser.lookup_command(msgformat) def create_command(self, msg): return self.serial.msgparser.create_command(msg) # Wrappers for mcu object creation def create_stepper(self, step_pin, dir_pin): return MCU_stepper(self, step_pin, dir_pin) def create_endstop(self, pin): return MCU_endstop(self, pin) def create_digital_out(self, pin, max_duration=2.): return MCU_digital_out(self, pin, max_duration) def create_pwm(self, pin, cycle_time, hard_cycle_ticks=0, max_duration=2.): if hard_cycle_ticks < 0: return MCU_digital_out(self, pin, max_duration) return MCU_pwm(self, pin, cycle_time, hard_cycle_ticks, max_duration) def create_adc(self, pin): return MCU_adc(self, pin) # Clock syncing def set_print_start_time(self, eventtime): clock = self.serial.get_clock(eventtime) logging.info("Synchronizing mcu clock at %.6f to %d" % ( eventtime, clock)) est_mcu_time = clock / self._mcu_freq self._print_start_time = est_mcu_time def get_print_buffer_time(self, eventtime, print_time): if self.is_shutdown: return 0. mcu_time = print_time + self._print_start_time est_mcu_time = self.serial.get_clock(eventtime) / self._mcu_freq return mcu_time - est_mcu_time def print_to_mcu_time(self, print_time): return print_time + self._print_start_time def get_mcu_freq(self): return self._mcu_freq def get_last_clock(self): return self.serial.get_last_clock() def get_max_stepper_error(self): return self._max_stepper_error # Move command queuing def send(self, cmd, minclock=0, reqclock=0, cq=None): self.serial.send(cmd, minclock, reqclock, cq=cq) def flush_moves(self, print_time): if self._steppersync is None: return mcu_time = print_time + self._print_start_time clock = int(mcu_time * self._mcu_freq) ret = self._ffi_lib.steppersync_flush(self._steppersync, clock) if ret: raise error("Internal error in stepcompress") def pause(self, waketime): return self._printer.reactor.pause(waketime) def monotonic(self): return self._printer.reactor.monotonic() def __del__(self): self.disconnect()