// Iterative solver for kinematic moves // // Copyright (C) 2018 Kevin O'Connor // // This file may be distributed under the terms of the GNU GPLv3 license. #include // sqrt #include // malloc #include // memset #include "compiler.h" // __visible #include "itersolve.h" // struct coord #include "pyhelper.h" // errorf #include "stepcompress.h" // queue_append_start /**************************************************************** * Kinematic moves ****************************************************************/ struct move * __visible move_alloc(void) { struct move *m = malloc(sizeof(*m)); memset(m, 0, sizeof(*m)); return m; } // Populate a 'struct move' with a velocity trapezoid void __visible move_fill(struct move *m, double print_time , double accel_t, double cruise_t, double decel_t , double start_pos_x, double start_pos_y, double start_pos_z , double axes_d_x, double axes_d_y, double axes_d_z , double start_v, double cruise_v, double accel) { // Setup velocity trapezoid m->print_time = print_time; m->move_t = accel_t + cruise_t + decel_t; m->accel_t = accel_t; m->cruise_t = cruise_t; m->cruise_start_d = accel_t * .5 * (cruise_v + start_v); m->decel_start_d = m->cruise_start_d + cruise_t * cruise_v; // Setup for accel/cruise/decel phases m->cruise_v = cruise_v; m->accel.c1 = start_v; m->accel.c2 = .5 * accel; m->decel.c1 = cruise_v; m->decel.c2 = -m->accel.c2; // Setup for move_get_coord() m->start_pos.x = start_pos_x; m->start_pos.y = start_pos_y; m->start_pos.z = start_pos_z; double inv_move_d = 1. / sqrt(axes_d_x*axes_d_x + axes_d_y*axes_d_y + axes_d_z*axes_d_z); m->axes_r.x = axes_d_x * inv_move_d; m->axes_r.y = axes_d_y * inv_move_d; m->axes_r.z = axes_d_z * inv_move_d; } // Find the distance travel during acceleration/deceleration static inline double move_eval_accel(struct move_accel *ma, double move_time) { return (ma->c1 + ma->c2 * move_time) * move_time; } // Return the distance moved given a time in a move inline double move_get_distance(struct move *m, double move_time) { if (unlikely(move_time < m->accel_t)) // Acceleration phase of move return move_eval_accel(&m->accel, move_time); move_time -= m->accel_t; if (likely(move_time <= m->cruise_t)) // Cruising phase return m->cruise_start_d + m->cruise_v * move_time; // Deceleration phase move_time -= m->cruise_t; return m->decel_start_d + move_eval_accel(&m->decel, move_time); } // Return the XYZ coordinates given a time in a move inline struct coord move_get_coord(struct move *m, double move_time) { double move_dist = move_get_distance(m, move_time); return (struct coord) { .x = m->start_pos.x + m->axes_r.x * move_dist, .y = m->start_pos.y + m->axes_r.y * move_dist, .z = m->start_pos.z + m->axes_r.z * move_dist }; } /**************************************************************** * Iterative solver ****************************************************************/ struct timepos { double time, position; }; // Find step using "false position" method static struct timepos itersolve_find_step(struct stepper_kinematics *sk, struct move *m , struct timepos low, struct timepos high , double target) { sk_callback calc_position = sk->calc_position; struct timepos best_guess = high; low.position -= target; high.position -= target; if (!high.position) // The high range was a perfect guess for the next step return best_guess; int high_sign = signbit(high.position); if (high_sign == signbit(low.position)) // The target is not in the low/high range - return low range return (struct timepos){ low.time, target }; for (;;) { double guess_time = ((low.time*high.position - high.time*low.position) / (high.position - low.position)); if (fabs(guess_time - best_guess.time) <= .000000001) break; best_guess.time = guess_time; best_guess.position = calc_position(sk, m, guess_time); double guess_position = best_guess.position - target; int guess_sign = signbit(guess_position); if (guess_sign == high_sign) { high.time = guess_time; high.position = guess_position; } else { low.time = guess_time; low.position = guess_position; } } return best_guess; } // Generate step times for a stepper during a move int32_t __visible itersolve_gen_steps(struct stepper_kinematics *sk, struct move *m) { struct stepcompress *sc = sk->sc; sk_callback calc_position = sk->calc_position; double half_step = .5 * sk->step_dist; double mcu_freq = stepcompress_get_mcu_freq(sc); struct timepos last = { 0., sk->commanded_pos }, low = last, high = last; double seek_time_delta = 0.000100; int steps = 0, sdir = stepcompress_get_step_dir(sc); struct queue_append qa = queue_append_start(sc, m->print_time, .5); for (;;) { // Determine if next step is in forward or reverse direction double dist = high.position - last.position; if (fabs(dist) < half_step) { seek_new_high_range: if (high.time >= m->move_t) // At end of move break; // Need to increase next step search range low = high; high.time = last.time + seek_time_delta; seek_time_delta += seek_time_delta; if (high.time > m->move_t) high.time = m->move_t; high.position = calc_position(sk, m, high.time); continue; } int next_sdir = dist > 0.; if (unlikely(next_sdir != sdir)) { // Direction change if (fabs(dist) < half_step + .000000001) // Only change direction if going past midway point goto seek_new_high_range; if (last.time >= low.time && high.time > last.time) { // Must seek new low range to avoid re-finding previous time high.time = (last.time + high.time) * .5; high.position = calc_position(sk, m, high.time); continue; } int ret = queue_append_set_next_step_dir(&qa, next_sdir); if (ret) return ret; sdir = next_sdir; } // Find step double target = last.position + (sdir ? half_step : -half_step); struct timepos next = itersolve_find_step(sk, m, low, high, target); // Add step at given time int ret = queue_append(&qa, next.time * mcu_freq); if (ret) return ret; steps += sdir ? 1 : -1; seek_time_delta = next.time - last.time; if (seek_time_delta < .000000001) seek_time_delta = .000000001; last.position = target + (sdir ? half_step : -half_step); last.time = next.time; low = next; if (last.time >= high.time) // The high range is no longer valid - recalculate it goto seek_new_high_range; } queue_append_finish(qa); sk->commanded_pos = last.position; return steps; } void __visible itersolve_set_stepcompress(struct stepper_kinematics *sk , struct stepcompress *sc, double step_dist) { sk->sc = sc; sk->step_dist = step_dist; } void __visible itersolve_set_commanded_pos(struct stepper_kinematics *sk, double pos) { sk->commanded_pos = pos; }