# Interface to Klipper micro-controller code # # Copyright (C) 2016-2021 Kevin O'Connor # # This file may be distributed under the terms of the GNU GPLv3 license. import sys, os, zlib, logging, math import serialhdl, msgproto, pins, chelper, clocksync class error(Exception): pass class MCU_trsync: REASON_ENDSTOP_HIT = 1 REASON_COMMS_TIMEOUT = 2 REASON_HOST_REQUEST = 3 REASON_PAST_END_TIME = 4 def __init__(self, mcu, trdispatch): self._mcu = mcu self._trdispatch = trdispatch self._reactor = mcu.get_printer().get_reactor() self._steppers = [] self._trdispatch_mcu = None self._oid = mcu.create_oid() self._cmd_queue = mcu.alloc_command_queue() self._trsync_start_cmd = self._trsync_set_timeout_cmd = None self._trsync_trigger_cmd = self._trsync_query_cmd = None self._stepper_stop_cmd = None self._trigger_completion = None self._home_end_clock = None mcu.register_config_callback(self._build_config) printer = mcu.get_printer() printer.register_event_handler("klippy:shutdown", self._shutdown) def get_mcu(self): return self._mcu def get_oid(self): return self._oid def get_command_queue(self): return self._cmd_queue def add_stepper(self, stepper): if stepper in self._steppers: return self._steppers.append(stepper) def get_steppers(self): return list(self._steppers) def _build_config(self): mcu = self._mcu # Setup config mcu.add_config_cmd("config_trsync oid=%d" % (self._oid,)) mcu.add_config_cmd( "trsync_start oid=%d report_clock=0 report_ticks=0 expire_reason=0" % (self._oid,), on_restart=True) # Lookup commands self._trsync_start_cmd = mcu.lookup_command( "trsync_start oid=%c report_clock=%u report_ticks=%u" " expire_reason=%c", cq=self._cmd_queue) self._trsync_set_timeout_cmd = mcu.lookup_command( "trsync_set_timeout oid=%c clock=%u", cq=self._cmd_queue) self._trsync_trigger_cmd = mcu.lookup_command( "trsync_trigger oid=%c reason=%c", cq=self._cmd_queue) self._trsync_query_cmd = mcu.lookup_query_command( "trsync_trigger oid=%c reason=%c", "trsync_state oid=%c can_trigger=%c trigger_reason=%c clock=%u", oid=self._oid, cq=self._cmd_queue) self._stepper_stop_cmd = mcu.lookup_command( "stepper_stop_on_trigger oid=%c trsync_oid=%c", cq=self._cmd_queue) # Create trdispatch_mcu object set_timeout_tag = mcu.lookup_command_tag( "trsync_set_timeout oid=%c clock=%u") trigger_tag = mcu.lookup_command_tag("trsync_trigger oid=%c reason=%c") state_tag = mcu.lookup_command_tag( "trsync_state oid=%c can_trigger=%c trigger_reason=%c clock=%u") ffi_main, ffi_lib = chelper.get_ffi() self._trdispatch_mcu = ffi_main.gc(ffi_lib.trdispatch_mcu_alloc( self._trdispatch, mcu._serial.serialqueue, # XXX self._cmd_queue, self._oid, set_timeout_tag, trigger_tag, state_tag), ffi_lib.free) def _shutdown(self): tc = self._trigger_completion if tc is not None: self._trigger_completion = None tc.complete(False) def _handle_trsync_state(self, params): if not params['can_trigger']: tc = self._trigger_completion if tc is not None: self._trigger_completion = None reason = params['trigger_reason'] is_failure = (reason == self.REASON_COMMS_TIMEOUT) self._reactor.async_complete(tc, is_failure) elif self._home_end_clock is not None: clock = self._mcu.clock32_to_clock64(params['clock']) if clock >= self._home_end_clock: self._home_end_clock = None self._trsync_trigger_cmd.send([self._oid, self.REASON_PAST_END_TIME]) def start(self, print_time, trigger_completion, expire_timeout): self._trigger_completion = trigger_completion self._home_end_clock = None clock = self._mcu.print_time_to_clock(print_time) expire_ticks = self._mcu.seconds_to_clock(expire_timeout) expire_clock = clock + expire_ticks report_ticks = self._mcu.seconds_to_clock(expire_timeout * .4) min_extend_ticks = self._mcu.seconds_to_clock(expire_timeout * .4 * .8) ffi_main, ffi_lib = chelper.get_ffi() ffi_lib.trdispatch_mcu_setup(self._trdispatch_mcu, clock, expire_clock, expire_ticks, min_extend_ticks) self._mcu.register_response(self._handle_trsync_state, "trsync_state", self._oid) self._trsync_start_cmd.send([self._oid, clock, report_ticks, self.REASON_COMMS_TIMEOUT], reqclock=clock) for s in self._steppers: self._stepper_stop_cmd.send([s.get_oid(), self._oid]) self._trsync_set_timeout_cmd.send([self._oid, expire_clock], reqclock=expire_clock) def set_home_end_time(self, home_end_time): self._home_end_clock = self._mcu.print_time_to_clock(home_end_time) def stop(self): self._mcu.register_response(None, "trsync_state", self._oid) self._trigger_completion = None if self._mcu.is_fileoutput(): return self.REASON_ENDSTOP_HIT params = self._trsync_query_cmd.send([self._oid, self.REASON_HOST_REQUEST]) for s in self._steppers: s.note_homing_end() return params['trigger_reason'] TRSYNC_TIMEOUT = 0.025 TRSYNC_SINGLE_MCU_TIMEOUT = 0.250 class MCU_endstop: RETRY_QUERY = 1.000 def __init__(self, mcu, pin_params): self._mcu = mcu self._pin = pin_params['pin'] self._pullup = pin_params['pullup'] self._invert = pin_params['invert'] self._oid = self._mcu.create_oid() self._home_cmd = self._query_cmd = None self._mcu.register_config_callback(self._build_config) self._trigger_completion = None self._rest_ticks = 0 ffi_main, ffi_lib = chelper.get_ffi() self._trdispatch = ffi_main.gc(ffi_lib.trdispatch_alloc(), ffi_lib.free) self._trsyncs = [MCU_trsync(mcu, self._trdispatch)] def get_mcu(self): return self._mcu def add_stepper(self, stepper): trsyncs = {trsync.get_mcu(): trsync for trsync in self._trsyncs} trsync = trsyncs.get(stepper.get_mcu()) if trsync is None: trsync = MCU_trsync(stepper.get_mcu(), self._trdispatch) self._trsyncs.append(trsync) trsync.add_stepper(stepper) # Check for unsupported multi-mcu shared stepper rails sname = stepper.get_name() if sname.startswith('stepper_'): for ot in self._trsyncs: for s in ot.get_steppers(): if ot is not trsync and s.get_name().startswith(sname[:9]): cerror = self._mcu.get_printer().config_error raise cerror("Multi-mcu homing not supported on" " multi-mcu shared axis") def get_steppers(self): return [s for trsync in self._trsyncs for s in trsync.get_steppers()] def _build_config(self): # Setup config self._mcu.add_config_cmd("config_endstop oid=%d pin=%s pull_up=%d" % (self._oid, self._pin, self._pullup)) self._mcu.add_config_cmd( "endstop_home oid=%d clock=0 sample_ticks=0 sample_count=0" " rest_ticks=0 pin_value=0 trsync_oid=0 trigger_reason=0" % (self._oid,), on_restart=True) # Lookup commands cmd_queue = self._trsyncs[0].get_command_queue() self._home_cmd = self._mcu.lookup_command( "endstop_home oid=%c clock=%u sample_ticks=%u sample_count=%c" " rest_ticks=%u pin_value=%c trsync_oid=%c trigger_reason=%c", cq=cmd_queue) self._query_cmd = self._mcu.lookup_query_command( "endstop_query_state oid=%c", "endstop_state oid=%c homing=%c next_clock=%u pin_value=%c", oid=self._oid, cq=cmd_queue) def home_start(self, print_time, sample_time, sample_count, rest_time, triggered=True): clock = self._mcu.print_time_to_clock(print_time) rest_ticks = self._mcu.print_time_to_clock(print_time+rest_time) - clock self._rest_ticks = rest_ticks reactor = self._mcu.get_printer().get_reactor() self._trigger_completion = reactor.completion() expire_timeout = TRSYNC_TIMEOUT if len(self._trsyncs) == 1: expire_timeout = TRSYNC_SINGLE_MCU_TIMEOUT for trsync in self._trsyncs: trsync.start(print_time, self._trigger_completion, expire_timeout) etrsync = self._trsyncs[0] ffi_main, ffi_lib = chelper.get_ffi() ffi_lib.trdispatch_start(self._trdispatch, etrsync.REASON_HOST_REQUEST) self._home_cmd.send( [self._oid, clock, self._mcu.seconds_to_clock(sample_time), sample_count, rest_ticks, triggered ^ self._invert, etrsync.get_oid(), etrsync.REASON_ENDSTOP_HIT], reqclock=clock) return self._trigger_completion def home_wait(self, home_end_time): etrsync = self._trsyncs[0] etrsync.set_home_end_time(home_end_time) if self._mcu.is_fileoutput(): self._trigger_completion.complete(True) self._trigger_completion.wait() self._home_cmd.send([self._oid, 0, 0, 0, 0, 0, 0, 0]) ffi_main, ffi_lib = chelper.get_ffi() ffi_lib.trdispatch_stop(self._trdispatch) res = [trsync.stop() for trsync in self._trsyncs] if any([r == etrsync.REASON_COMMS_TIMEOUT for r in res]): return -1. if res[0] != etrsync.REASON_ENDSTOP_HIT: return 0. if self._mcu.is_fileoutput(): return home_end_time params = self._query_cmd.send([self._oid]) next_clock = self._mcu.clock32_to_clock64(params['next_clock']) return self._mcu.clock_to_print_time(next_clock - self._rest_ticks) def query_endstop(self, print_time): clock = self._mcu.print_time_to_clock(print_time) if self._mcu.is_fileoutput(): return 0 params = self._query_cmd.send([self._oid], minclock=clock) return params['pin_value'] ^ self._invert class MCU_digital_out: def __init__(self, mcu, pin_params): self._mcu = mcu self._oid = None self._mcu.register_config_callback(self._build_config) self._pin = pin_params['pin'] self._invert = pin_params['invert'] self._start_value = self._shutdown_value = self._invert self._is_static = False self._max_duration = 2. self._last_clock = 0 self._set_cmd = None def get_mcu(self): return self._mcu def setup_max_duration(self, max_duration): self._max_duration = max_duration def setup_start_value(self, start_value, shutdown_value, is_static=False): if is_static and start_value != shutdown_value: raise pins.error("Static pin can not have shutdown value") self._start_value = (not not start_value) ^ self._invert self._shutdown_value = (not not shutdown_value) ^ self._invert self._is_static = is_static def _build_config(self): if self._is_static: self._mcu.add_config_cmd("set_digital_out pin=%s value=%d" % (self._pin, self._start_value)) return if self._max_duration and self._start_value != self._shutdown_value: raise pins.error("Pin with max duration must have start" " value equal to shutdown value") mdur_ticks = self._mcu.seconds_to_clock(self._max_duration) if mdur_ticks >= 1<<31: raise pins.error("Digital pin max duration too large") self._mcu.request_move_queue_slot() self._oid = self._mcu.create_oid() self._mcu.add_config_cmd( "config_digital_out oid=%d pin=%s value=%d default_value=%d" " max_duration=%d" % (self._oid, self._pin, self._start_value, self._shutdown_value, mdur_ticks)) self._mcu.add_config_cmd("update_digital_out oid=%d value=%d" % (self._oid, self._start_value), on_restart=True) cmd_queue = self._mcu.alloc_command_queue() self._set_cmd = self._mcu.lookup_command( "queue_digital_out oid=%c clock=%u on_ticks=%u", cq=cmd_queue) def set_digital(self, print_time, value): clock = self._mcu.print_time_to_clock(print_time) self._set_cmd.send([self._oid, clock, (not not value) ^ self._invert], minclock=self._last_clock, reqclock=clock) self._last_clock = clock class MCU_pwm: def __init__(self, mcu, pin_params): self._mcu = mcu self._hardware_pwm = False self._cycle_time = 0.100 self._max_duration = 2. self._oid = None self._mcu.register_config_callback(self._build_config) self._pin = pin_params['pin'] self._invert = pin_params['invert'] self._start_value = self._shutdown_value = float(self._invert) self._is_static = False self._last_clock = self._last_cycle_ticks = 0 self._pwm_max = 0. self._set_cmd = self._set_cycle_ticks = None def get_mcu(self): return self._mcu def setup_max_duration(self, max_duration): self._max_duration = max_duration def setup_cycle_time(self, cycle_time, hardware_pwm=False): self._cycle_time = cycle_time self._hardware_pwm = hardware_pwm def setup_start_value(self, start_value, shutdown_value, is_static=False): if is_static and start_value != shutdown_value: raise pins.error("Static pin can not have shutdown value") if self._invert: start_value = 1. - start_value shutdown_value = 1. - shutdown_value self._start_value = max(0., min(1., start_value)) self._shutdown_value = max(0., min(1., shutdown_value)) self._is_static = is_static def _build_config(self): if self._max_duration and self._start_value != self._shutdown_value: raise pins.error("Pin with max duration must have start" " value equal to shutdown value") cmd_queue = self._mcu.alloc_command_queue() curtime = self._mcu.get_printer().get_reactor().monotonic() printtime = self._mcu.estimated_print_time(curtime) self._last_clock = self._mcu.print_time_to_clock(printtime + 0.200) cycle_ticks = self._mcu.seconds_to_clock(self._cycle_time) mdur_ticks = self._mcu.seconds_to_clock(self._max_duration) if mdur_ticks >= 1<<31: raise pins.error("PWM pin max duration too large") if self._hardware_pwm: self._pwm_max = self._mcu.get_constant_float("PWM_MAX") if self._is_static: self._mcu.add_config_cmd( "set_pwm_out pin=%s cycle_ticks=%d value=%d" % (self._pin, cycle_ticks, self._start_value * self._pwm_max)) return self._mcu.request_move_queue_slot() self._oid = self._mcu.create_oid() self._mcu.add_config_cmd( "config_pwm_out oid=%d pin=%s cycle_ticks=%d value=%d" " default_value=%d max_duration=%d" % (self._oid, self._pin, cycle_ticks, self._start_value * self._pwm_max, self._shutdown_value * self._pwm_max, mdur_ticks)) svalue = int(self._start_value * self._pwm_max + 0.5) self._mcu.add_config_cmd("queue_pwm_out oid=%d clock=%d value=%d" % (self._oid, self._last_clock, svalue), on_restart=True) self._set_cmd = self._mcu.lookup_command( "queue_pwm_out oid=%c clock=%u value=%hu", cq=cmd_queue) return # Software PWM if self._shutdown_value not in [0., 1.]: raise pins.error("shutdown value must be 0.0 or 1.0 on soft pwm") if self._is_static: self._mcu.add_config_cmd("set_digital_out pin=%s value=%d" % (self._pin, self._start_value >= 0.5)) return if cycle_ticks >= 1<<31: raise pins.error("PWM pin cycle time too large") self._mcu.request_move_queue_slot() self._oid = self._mcu.create_oid() self._mcu.add_config_cmd( "config_digital_out oid=%d pin=%s value=%d" " default_value=%d max_duration=%d" % (self._oid, self._pin, self._start_value >= 1.0, self._shutdown_value >= 0.5, mdur_ticks)) self._mcu.add_config_cmd( "set_digital_out_pwm_cycle oid=%d cycle_ticks=%d" % (self._oid, cycle_ticks)) self._last_cycle_ticks = cycle_ticks svalue = int(self._start_value * cycle_ticks + 0.5) self._mcu.add_config_cmd( "queue_digital_out oid=%d clock=%d on_ticks=%d" % (self._oid, self._last_clock, svalue), is_init=True) self._set_cmd = self._mcu.lookup_command( "queue_digital_out oid=%c clock=%u on_ticks=%u", cq=cmd_queue) self._set_cycle_ticks = self._mcu.lookup_command( "set_digital_out_pwm_cycle oid=%c cycle_ticks=%u", cq=cmd_queue) def set_pwm(self, print_time, value, cycle_time=None): clock = self._mcu.print_time_to_clock(print_time) minclock = self._last_clock self._last_clock = clock if self._invert: value = 1. - value if self._hardware_pwm: v = int(max(0., min(1., value)) * self._pwm_max + 0.5) self._set_cmd.send([self._oid, clock, v], minclock=minclock, reqclock=clock) return # Soft pwm update if cycle_time is None: cycle_time = self._cycle_time cycle_ticks = self._mcu.seconds_to_clock(cycle_time) if cycle_ticks != self._last_cycle_ticks: if cycle_ticks >= 1<<31: raise self._mcu.get_printer().command_error( "PWM cycle time too large") self._set_cycle_ticks.send([self._oid, cycle_ticks], minclock=minclock, reqclock=clock) self._last_cycle_ticks = cycle_ticks on_ticks = int(max(0., min(1., value)) * float(cycle_ticks) + 0.5) self._set_cmd.send([self._oid, clock, on_ticks], minclock=minclock, reqclock=clock) class MCU_adc: def __init__(self, mcu, pin_params): self._mcu = mcu self._pin = pin_params['pin'] self._min_sample = self._max_sample = 0. self._sample_time = self._report_time = 0. self._sample_count = self._range_check_count = 0 self._report_clock = 0 self._last_state = (0., 0.) self._oid = self._callback = None self._mcu.register_config_callback(self._build_config) self._inv_max_adc = 0. def get_mcu(self): return self._mcu def setup_minmax(self, sample_time, sample_count, minval=0., maxval=1., range_check_count=0): self._sample_time = sample_time self._sample_count = sample_count self._min_sample = minval self._max_sample = maxval self._range_check_count = range_check_count def setup_adc_callback(self, report_time, callback): self._report_time = report_time self._callback = callback def get_last_value(self): return self._last_state def _build_config(self): if not self._sample_count: return self._oid = self._mcu.create_oid() self._mcu.add_config_cmd("config_analog_in oid=%d pin=%s" % ( self._oid, self._pin)) clock = self._mcu.get_query_slot(self._oid) sample_ticks = self._mcu.seconds_to_clock(self._sample_time) mcu_adc_max = self._mcu.get_constant_float("ADC_MAX") max_adc = self._sample_count * mcu_adc_max self._inv_max_adc = 1.0 / max_adc self._report_clock = self._mcu.seconds_to_clock(self._report_time) min_sample = max(0, min(0xffff, int(self._min_sample * max_adc))) max_sample = max(0, min(0xffff, int( math.ceil(self._max_sample * max_adc)))) self._mcu.add_config_cmd( "query_analog_in oid=%d clock=%d sample_ticks=%d sample_count=%d" " rest_ticks=%d min_value=%d max_value=%d range_check_count=%d" % ( self._oid, clock, sample_ticks, self._sample_count, self._report_clock, min_sample, max_sample, self._range_check_count), is_init=True) self._mcu.register_response(self._handle_analog_in_state, "analog_in_state", self._oid) def _handle_analog_in_state(self, params): last_value = params['value'] * self._inv_max_adc next_clock = self._mcu.clock32_to_clock64(params['next_clock']) last_read_clock = next_clock - self._report_clock last_read_time = self._mcu.clock_to_print_time(last_read_clock) self._last_state = (last_value, last_read_time) if self._callback is not None: self._callback(last_read_time, last_value) # Class to retry sending of a query command until a given response is received class RetryAsyncCommand: TIMEOUT_TIME = 5.0 RETRY_TIME = 0.500 def __init__(self, serial, name, oid=None): self.serial = serial self.name = name self.oid = oid self.reactor = serial.get_reactor() self.completion = self.reactor.completion() self.min_query_time = self.reactor.monotonic() self.serial.register_response(self.handle_callback, name, oid) def handle_callback(self, params): if params['#sent_time'] >= self.min_query_time: self.min_query_time = self.reactor.NEVER self.reactor.async_complete(self.completion, params) def get_response(self, cmds, cmd_queue, minclock=0, reqclock=0): cmd, = cmds self.serial.raw_send_wait_ack(cmd, minclock, reqclock, cmd_queue) first_query_time = query_time = self.reactor.monotonic() while 1: params = self.completion.wait(query_time + self.RETRY_TIME) if params is not None: self.serial.register_response(None, self.name, self.oid) return params query_time = self.reactor.monotonic() if query_time > first_query_time + self.TIMEOUT_TIME: self.serial.register_response(None, self.name, self.oid) raise serialhdl.error("Timeout on wait for '%s' response" % (self.name,)) self.serial.raw_send(cmd, minclock, minclock, cmd_queue) # Wrapper around query commands class CommandQueryWrapper: def __init__(self, serial, msgformat, respformat, oid=None, cmd_queue=None, is_async=False, error=serialhdl.error): self._serial = serial self._cmd = serial.get_msgparser().lookup_command(msgformat) serial.get_msgparser().lookup_command(respformat) self._response = respformat.split()[0] self._oid = oid self._error = error self._xmit_helper = serialhdl.SerialRetryCommand if is_async: self._xmit_helper = RetryAsyncCommand if cmd_queue is None: cmd_queue = serial.get_default_command_queue() self._cmd_queue = cmd_queue def _do_send(self, cmds, minclock, reqclock): xh = self._xmit_helper(self._serial, self._response, self._oid) reqclock = max(minclock, reqclock) try: return xh.get_response(cmds, self._cmd_queue, minclock, reqclock) except serialhdl.error as e: raise self._error(str(e)) def send(self, data=(), minclock=0, reqclock=0): return self._do_send([self._cmd.encode(data)], minclock, reqclock) def send_with_preface(self, preface_cmd, preface_data=(), data=(), minclock=0, reqclock=0): cmds = [preface_cmd._cmd.encode(preface_data), self._cmd.encode(data)] return self._do_send(cmds, minclock, reqclock) # Wrapper around command sending class CommandWrapper: def __init__(self, serial, msgformat, cmd_queue=None): self._serial = serial self._cmd = serial.get_msgparser().lookup_command(msgformat) if cmd_queue is None: cmd_queue = serial.get_default_command_queue() self._cmd_queue = cmd_queue def send(self, data=(), minclock=0, reqclock=0): cmd = self._cmd.encode(data) self._serial.raw_send(cmd, minclock, reqclock, self._cmd_queue) class MCU: error = error def __init__(self, config, clocksync): self._printer = printer = config.get_printer() self._clocksync = clocksync self._reactor = printer.get_reactor() self._name = config.get_name() if self._name.startswith('mcu '): self._name = self._name[4:] # Serial port wp = "mcu '%s': " % (self._name) self._serial = serialhdl.SerialReader(self._reactor, warn_prefix=wp) self._baud = 0 self._canbus_iface = None canbus_uuid = config.get('canbus_uuid', None) if canbus_uuid is not None: self._serialport = canbus_uuid self._canbus_iface = config.get('canbus_interface', 'can0') cbid = self._printer.load_object(config, 'canbus_ids') cbid.add_uuid(config, canbus_uuid, self._canbus_iface) else: self._serialport = config.get('serial') if not (self._serialport.startswith("/dev/rpmsg_") or self._serialport.startswith("/tmp/klipper_host_")): self._baud = config.getint('baud', 250000, minval=2400) # Restarts restart_methods = [None, 'arduino', 'cheetah', 'command', 'rpi_usb'] self._restart_method = 'command' if self._baud: rmethods = {m: m for m in restart_methods} self._restart_method = config.getchoice('restart_method', rmethods, None) self._reset_cmd = self._config_reset_cmd = None self._emergency_stop_cmd = None self._is_shutdown = self._is_timeout = False self._shutdown_clock = 0 self._shutdown_msg = "" # Config building printer.lookup_object('pins').register_chip(self._name, self) self._oid_count = 0 self._config_callbacks = [] self._config_cmds = [] self._restart_cmds = [] self._init_cmds = [] self._mcu_freq = 0. # Move command queuing ffi_main, self._ffi_lib = chelper.get_ffi() self._max_stepper_error = config.getfloat('max_stepper_error', 0.000025, minval=0.) self._reserved_move_slots = 0 self._stepqueues = [] self._steppersync = None # Stats self._get_status_info = {} self._stats_sumsq_base = 0. self._mcu_tick_avg = 0. self._mcu_tick_stddev = 0. self._mcu_tick_awake = 0. # Register handlers printer.register_event_handler("klippy:connect", self._connect) printer.register_event_handler("klippy:mcu_identify", self._mcu_identify) printer.register_event_handler("klippy:shutdown", self._shutdown) printer.register_event_handler("klippy:disconnect", self._disconnect) # Serial callbacks def _handle_mcu_stats(self, params): count = params['count'] tick_sum = params['sum'] c = 1.0 / (count * self._mcu_freq) self._mcu_tick_avg = tick_sum * c tick_sumsq = params['sumsq'] * self._stats_sumsq_base diff = count*tick_sumsq - tick_sum**2 self._mcu_tick_stddev = c * math.sqrt(max(0., diff)) self._mcu_tick_awake = tick_sum / self._mcu_freq def _handle_shutdown(self, params): if self._is_shutdown: return self._is_shutdown = True clock = params.get("clock") if clock is not None: self._shutdown_clock = self.clock32_to_clock64(clock) self._shutdown_msg = msg = params['static_string_id'] logging.info("MCU '%s' %s: %s\n%s\n%s", self._name, params['#name'], self._shutdown_msg, self._clocksync.dump_debug(), self._serial.dump_debug()) prefix = "MCU '%s' shutdown: " % (self._name,) if params['#name'] == 'is_shutdown': prefix = "Previous MCU '%s' shutdown: " % (self._name,) self._printer.invoke_async_shutdown(prefix + msg + error_help(msg)) def _handle_starting(self, params): if not self._is_shutdown: self._printer.invoke_async_shutdown("MCU '%s' spontaneous restart" % (self._name,)) # Connection phase def _check_restart(self, reason): start_reason = self._printer.get_start_args().get("start_reason") if start_reason == 'firmware_restart': return logging.info("Attempting automated MCU '%s' restart: %s", self._name, reason) self._printer.request_exit('firmware_restart') self._reactor.pause(self._reactor.monotonic() + 2.000) raise error("Attempt MCU '%s' restart failed" % (self._name,)) def _connect_file(self, pace=False): # In a debugging mode. Open debug output file and read data dictionary start_args = self._printer.get_start_args() if self._name == 'mcu': out_fname = start_args.get('debugoutput') dict_fname = start_args.get('dictionary') else: out_fname = start_args.get('debugoutput') + "-" + self._name dict_fname = start_args.get('dictionary_' + self._name) outfile = open(out_fname, 'wb') dfile = open(dict_fname, 'rb') dict_data = dfile.read() dfile.close() self._serial.connect_file(outfile, dict_data) self._clocksync.connect_file(self._serial, pace) # Handle pacing if not pace: def dummy_estimated_print_time(eventtime): return 0. self.estimated_print_time = dummy_estimated_print_time def _send_config(self, prev_crc): # Build config commands for cb in self._config_callbacks: cb() self._config_cmds.insert(0, "allocate_oids count=%d" % (self._oid_count,)) # Resolve pin names mcu_type = self._serial.get_msgparser().get_constant('MCU') ppins = self._printer.lookup_object('pins') pin_resolver = ppins.get_pin_resolver(self._name) for cmdlist in (self._config_cmds, self._restart_cmds, self._init_cmds): for i, cmd in enumerate(cmdlist): cmdlist[i] = pin_resolver.update_command(cmd) # Calculate config CRC encoded_config = '\n'.join(self._config_cmds).encode() config_crc = zlib.crc32(encoded_config) & 0xffffffff self.add_config_cmd("finalize_config crc=%d" % (config_crc,)) if prev_crc is not None and config_crc != prev_crc: self._check_restart("CRC mismatch") raise error("MCU '%s' CRC does not match config" % (self._name,)) # Transmit config messages (if needed) self.register_response(self._handle_starting, 'starting') try: if prev_crc is None: logging.info("Sending MCU '%s' printer configuration...", self._name) for c in self._config_cmds: self._serial.send(c) else: for c in self._restart_cmds: self._serial.send(c) # Transmit init messages for c in self._init_cmds: self._serial.send(c) except msgproto.enumeration_error as e: enum_name, enum_value = e.get_enum_params() if enum_name == 'pin': # Raise pin name errors as a config error (not a protocol error) raise self._printer.config_error( "Pin '%s' is not a valid pin name on mcu '%s'" % (enum_value, self._name)) raise def _send_get_config(self): get_config_cmd = self.lookup_query_command( "get_config", "config is_config=%c crc=%u is_shutdown=%c move_count=%hu") if self.is_fileoutput(): return { 'is_config': 0, 'move_count': 500, 'crc': 0 } config_params = get_config_cmd.send() if self._is_shutdown: raise error("MCU '%s' error during config: %s" % ( self._name, self._shutdown_msg)) if config_params['is_shutdown']: raise error("Can not update MCU '%s' config as it is shutdown" % ( self._name,)) return config_params def _log_info(self): msgparser = self._serial.get_msgparser() message_count = len(msgparser.get_messages()) version, build_versions = msgparser.get_version_info() log_info = [ "Loaded MCU '%s' %d commands (%s / %s)" % (self._name, message_count, version, build_versions), "MCU '%s' config: %s" % (self._name, " ".join( ["%s=%s" % (k, v) for k, v in self.get_constants().items()]))] return "\n".join(log_info) def _connect(self): config_params = self._send_get_config() if not config_params['is_config']: if self._restart_method == 'rpi_usb': # Only configure mcu after usb power reset self._check_restart("full reset before config") # Not configured - send config and issue get_config again self._send_config(None) config_params = self._send_get_config() if not config_params['is_config'] and not self.is_fileoutput(): raise error("Unable to configure MCU '%s'" % (self._name,)) else: start_reason = self._printer.get_start_args().get("start_reason") if start_reason == 'firmware_restart': raise error("Failed automated reset of MCU '%s'" % (self._name,)) # Already configured - send init commands self._send_config(config_params['crc']) # Setup steppersync with the move_count returned by get_config move_count = config_params['move_count'] if move_count < self._reserved_move_slots: raise error("Too few moves available on MCU '%s'" % (self._name,)) ffi_main, ffi_lib = chelper.get_ffi() self._steppersync = ffi_main.gc( ffi_lib.steppersync_alloc(self._serial.serialqueue, self._stepqueues, len(self._stepqueues), move_count-self._reserved_move_slots), ffi_lib.steppersync_free) ffi_lib.steppersync_set_time(self._steppersync, 0., self._mcu_freq) # Log config information move_msg = "Configured MCU '%s' (%d moves)" % (self._name, move_count) logging.info(move_msg) log_info = self._log_info() + "\n" + move_msg self._printer.set_rollover_info(self._name, log_info, log=False) def _mcu_identify(self): if self.is_fileoutput(): self._connect_file() else: resmeth = self._restart_method if resmeth == 'rpi_usb' and not os.path.exists(self._serialport): # Try toggling usb power self._check_restart("enable power") try: if self._canbus_iface is not None: cbid = self._printer.lookup_object('canbus_ids') nodeid = cbid.get_nodeid(self._serialport) self._serial.connect_canbus(self._serialport, nodeid, self._canbus_iface) elif self._baud: # Cheetah boards require RTS to be deasserted # else a reset will trigger the built-in bootloader. rts = (resmeth != "cheetah") self._serial.connect_uart(self._serialport, self._baud, rts) else: self._serial.connect_pipe(self._serialport) self._clocksync.connect(self._serial) except serialhdl.error as e: raise error(str(e)) logging.info(self._log_info()) ppins = self._printer.lookup_object('pins') pin_resolver = ppins.get_pin_resolver(self._name) for cname, value in self.get_constants().items(): if cname.startswith("RESERVE_PINS_"): for pin in value.split(','): if pin.startswith('[') and pin.endswith(']'): pin_resolver.reserve_interface(pin[1:-1], cname[13:]) else: pin_resolver.reserve_pin(pin, cname[13:]) self._mcu_freq = self.get_constant_float('CLOCK_FREQ') self._stats_sumsq_base = self.get_constant_float('STATS_SUMSQ_BASE') self._emergency_stop_cmd = self.lookup_command("emergency_stop") self._reset_cmd = self.try_lookup_command("reset") self._config_reset_cmd = self.try_lookup_command("config_reset") ext_only = self._reset_cmd is None and self._config_reset_cmd is None msgparser = self._serial.get_msgparser() mbaud = msgparser.get_constant('SERIAL_BAUD', None) if self._restart_method is None and mbaud is None and not ext_only: self._restart_method = 'command' version, build_versions = msgparser.get_version_info() self._get_status_info['mcu_version'] = version self._get_status_info['mcu_build_versions'] = build_versions self._get_status_info['mcu_constants'] = msgparser.get_constants() self.register_response(self._handle_shutdown, 'shutdown') self.register_response(self._handle_shutdown, 'is_shutdown') self.register_response(self._handle_mcu_stats, 'stats') # Config creation helpers def setup_pin(self, pin_type, pin_params): pcs = {'endstop': MCU_endstop, 'digital_out': MCU_digital_out, 'pwm': MCU_pwm, 'adc': MCU_adc} if pin_type not in pcs: raise pins.error("pin type %s not supported on mcu" % (pin_type,)) return pcs[pin_type](self, pin_params) def create_oid(self): self._oid_count += 1 return self._oid_count - 1 def register_config_callback(self, cb): self._config_callbacks.append(cb) def add_config_cmd(self, cmd, is_init=False, on_restart=False): if is_init: self._init_cmds.append(cmd) elif on_restart: self._restart_cmds.append(cmd) else: self._config_cmds.append(cmd) def get_query_slot(self, oid): slot = self.seconds_to_clock(oid * .01) t = int(self.estimated_print_time(self._reactor.monotonic()) + 1.5) return self.print_time_to_clock(t) + slot def register_stepqueue(self, stepqueue): self._stepqueues.append(stepqueue) def request_move_queue_slot(self): self._reserved_move_slots += 1 def seconds_to_clock(self, time): return int(time * self._mcu_freq) def get_max_stepper_error(self): return self._max_stepper_error # Wrapper functions def get_printer(self): return self._printer def get_name(self): return self._name def register_response(self, cb, msg, oid=None): self._serial.register_response(cb, msg, oid) def alloc_command_queue(self): return self._serial.alloc_command_queue() def lookup_command(self, msgformat, cq=None): return CommandWrapper(self._serial, msgformat, cq) def lookup_query_command(self, msgformat, respformat, oid=None, cq=None, is_async=False): return CommandQueryWrapper(self._serial, msgformat, respformat, oid, cq, is_async, self._printer.command_error) def try_lookup_command(self, msgformat): try: return self.lookup_command(msgformat) except self._serial.get_msgparser().error as e: return None def lookup_command_tag(self, msgformat): all_msgs = self._serial.get_msgparser().get_messages() return {fmt: msgtag for msgtag, msgtype, fmt in all_msgs}[msgformat] def get_enumerations(self): return self._serial.get_msgparser().get_enumerations() def get_constants(self): return self._serial.get_msgparser().get_constants() def get_constant_float(self, name): return self._serial.get_msgparser().get_constant_float(name) def print_time_to_clock(self, print_time): return self._clocksync.print_time_to_clock(print_time) def clock_to_print_time(self, clock): return self._clocksync.clock_to_print_time(clock) def estimated_print_time(self, eventtime): return self._clocksync.estimated_print_time(eventtime) def clock32_to_clock64(self, clock32): return self._clocksync.clock32_to_clock64(clock32) # Restarts def _disconnect(self): self._serial.disconnect() self._steppersync = None def _shutdown(self, force=False): if (self._emergency_stop_cmd is None or (self._is_shutdown and not force)): return self._emergency_stop_cmd.send() def _restart_arduino(self): logging.info("Attempting MCU '%s' reset", self._name) self._disconnect() serialhdl.arduino_reset(self._serialport, self._reactor) def _restart_cheetah(self): logging.info("Attempting MCU '%s' Cheetah-style reset", self._name) self._disconnect() serialhdl.cheetah_reset(self._serialport, self._reactor) def _restart_via_command(self): if ((self._reset_cmd is None and self._config_reset_cmd is None) or not self._clocksync.is_active()): logging.info("Unable to issue reset command on MCU '%s'", self._name) return if self._reset_cmd is None: # Attempt reset via config_reset command logging.info("Attempting MCU '%s' config_reset command", self._name) self._is_shutdown = True self._shutdown(force=True) self._reactor.pause(self._reactor.monotonic() + 0.015) self._config_reset_cmd.send() else: # Attempt reset via reset command logging.info("Attempting MCU '%s' reset command", self._name) self._reset_cmd.send() self._reactor.pause(self._reactor.monotonic() + 0.015) self._disconnect() def _restart_rpi_usb(self): logging.info("Attempting MCU '%s' reset via rpi usb power", self._name) self._disconnect() chelper.run_hub_ctrl(0) self._reactor.pause(self._reactor.monotonic() + 2.) chelper.run_hub_ctrl(1) def microcontroller_restart(self): if self._restart_method == 'rpi_usb': self._restart_rpi_usb() elif self._restart_method == 'command': self._restart_via_command() elif self._restart_method == 'cheetah': self._restart_cheetah() else: self._restart_arduino() # Misc external commands def is_fileoutput(self): return self._printer.get_start_args().get('debugoutput') is not None def is_shutdown(self): return self._is_shutdown def get_shutdown_clock(self): return self._shutdown_clock def flush_moves(self, print_time): if self._steppersync is None: return clock = self.print_time_to_clock(print_time) if clock < 0: return ret = self._ffi_lib.steppersync_flush(self._steppersync, clock) if ret: raise error("Internal error in MCU '%s' stepcompress" % (self._name,)) def check_active(self, print_time, eventtime): if self._steppersync is None: return offset, freq = self._clocksync.calibrate_clock(print_time, eventtime) self._ffi_lib.steppersync_set_time(self._steppersync, offset, freq) if (self._clocksync.is_active() or self.is_fileoutput() or self._is_timeout): return self._is_timeout = True logging.info("Timeout with MCU '%s' (eventtime=%f)", self._name, eventtime) self._printer.invoke_shutdown("Lost communication with MCU '%s'" % ( self._name,)) def get_status(self, eventtime=None): return dict(self._get_status_info) def stats(self, eventtime): load = "mcu_awake=%.03f mcu_task_avg=%.06f mcu_task_stddev=%.06f" % ( self._mcu_tick_awake, self._mcu_tick_avg, self._mcu_tick_stddev) stats = ' '.join([load, self._serial.stats(eventtime), self._clocksync.stats(eventtime)]) parts = [s.split('=', 1) for s in stats.split()] last_stats = {k:(float(v) if '.' in v else int(v)) for k, v in parts} self._get_status_info['last_stats'] = last_stats return False, '%s: %s' % (self._name, stats) Common_MCU_errors = { ("Timer too close",): """ This often indicates the host computer is overloaded. Check for other processes consuming excessive CPU time, high swap usage, disk errors, overheating, unstable voltage, or similar system problems on the host computer.""", ("Missed scheduling of next ",): """ This is generally indicative of an intermittent communication failure between micro-controller and host.""", ("ADC out of range",): """ This generally occurs when a heater temperature exceeds its configured min_temp or max_temp.""", ("Rescheduled timer in the past", "Stepper too far in past"): """ This generally occurs when the micro-controller has been requested to step at a rate higher than it is capable of obtaining.""", ("Command request",): """ This generally occurs in response to an M112 G-Code command or in response to an internal error in the host software.""", } def error_help(msg): for prefixes, help_msg in Common_MCU_errors.items(): for prefix in prefixes: if msg.startswith(prefix): return help_msg return "" def add_printer_objects(config): printer = config.get_printer() reactor = printer.get_reactor() mainsync = clocksync.ClockSync(reactor) printer.add_object('mcu', MCU(config.getsection('mcu'), mainsync)) for s in config.get_prefix_sections('mcu '): printer.add_object(s.section, MCU( s, clocksync.SecondarySync(reactor, mainsync))) def get_printer_mcu(printer, name): if name == 'mcu': return printer.lookup_object(name) return printer.lookup_object('mcu ' + name)