chelper: Move cartesian and delta kinematics code to their own C files

Move the cartesian and delta specific code to new files
kin_cartesian.c and kin_delta.c.

Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
This commit is contained in:
Kevin O'Connor 2018-06-06 16:49:44 -04:00
parent 8a830ff0ce
commit 9a2eb4bedd
5 changed files with 328 additions and 255 deletions

View File

@ -14,9 +14,12 @@ import cffi
COMPILE_CMD = ("gcc -Wall -g -O2 -shared -fPIC"
" -flto -fwhole-program -fno-use-linker-plugin"
" -o %s %s")
SOURCE_FILES = ['stepcompress.c', 'serialqueue.c', 'pyhelper.c']
SOURCE_FILES = [
'stepcompress.c', 'kin_cartesian.c', 'kin_delta.c',
'serialqueue.c', 'pyhelper.c'
]
DEST_LIB = "c_helper.so"
OTHER_FILES = ['list.h', 'serialqueue.h', 'pyhelper.h']
OTHER_FILES = ['list.h', 'serialqueue.h', 'stepcompress.h', 'pyhelper.h']
defs_stepcompress = """
struct stepcompress *stepcompress_alloc(uint32_t max_error
@ -27,14 +30,6 @@ defs_stepcompress = """
int stepcompress_set_homing(struct stepcompress *sc, uint64_t homing_clock);
int stepcompress_queue_msg(struct stepcompress *sc, uint32_t *data, int len);
int32_t stepcompress_push(struct stepcompress *sc, double step_clock
, int32_t sdir);
int32_t stepcompress_push_const(struct stepcompress *sc, double clock_offset
, double step_offset, double steps, double start_sv, double accel);
int32_t stepcompress_push_delta(struct stepcompress *sc
, double clock_offset, double move_sd, double start_sv, double accel
, double height, double startxy_sd, double arm_d, double movez_r);
struct steppersync *steppersync_alloc(struct serialqueue *sq
, struct stepcompress **sc_list, int sc_num, int move_num);
void steppersync_free(struct steppersync *ss);
@ -43,6 +38,19 @@ defs_stepcompress = """
int steppersync_flush(struct steppersync *ss, uint64_t move_clock);
"""
defs_kin_cartesian = """
int32_t stepcompress_push(struct stepcompress *sc, double step_clock
, int32_t sdir);
int32_t stepcompress_push_const(struct stepcompress *sc, double clock_offset
, double step_offset, double steps, double start_sv, double accel);
"""
defs_kin_delta = """
int32_t stepcompress_push_delta(struct stepcompress *sc
, double clock_offset, double move_sd, double start_sv, double accel
, double height, double startxy_sd, double arm_d, double movez_r);
"""
defs_serialqueue = """
#define MESSAGE_MAX 64
struct pull_queue_message {
@ -75,6 +83,11 @@ defs_pyhelper = """
double get_monotonic(void);
"""
defs_all = [
defs_stepcompress, defs_kin_cartesian, defs_kin_delta,
defs_serialqueue, defs_pyhelper
]
# Return the list of file modification times
def get_mtimes(srcdir, filelist):
out = []
@ -109,9 +122,8 @@ def get_ffi():
check_build_code(srcdir, DEST_LIB, SOURCE_FILES, COMPILE_CMD
, OTHER_FILES)
FFI_main = cffi.FFI()
FFI_main.cdef(defs_stepcompress)
FFI_main.cdef(defs_serialqueue)
FFI_main.cdef(defs_pyhelper)
for d in defs_all:
FFI_main.cdef(d)
FFI_lib = FFI_main.dlopen(os.path.join(srcdir, DEST_LIB))
# Setup error logging
def logging_callback(msg):

View File

@ -0,0 +1,113 @@
// Cartesian kinematics stepper pulse time generation
//
// Copyright (C) 2016-2018 Kevin O'Connor <kevin@koconnor.net>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
#include <math.h> // sqrt
#include "compiler.h" // likely
#include "pyhelper.h" // errorf
#include "stepcompress.h" // queue_append
// Common suffixes: _sd is step distance (a unit length the same
// distance the stepper moves on each step), _sv is step velocity (in
// units of step distance per time), _sd2 is step distance squared, _r
// is ratio (scalar usually between 0.0 and 1.0). Times are in
// seconds and acceleration is in units of step distance per second
// squared.
// Wrapper around sqrt() to handle small negative numbers
static double
_safe_sqrt(double v)
{
// Due to floating point truncation, it's possible to get a small
// negative number - treat it as zero.
if (v < -0.001)
errorf("safe_sqrt of %.9f", v);
return 0.;
}
inline double safe_sqrt(double v) {
return likely(v >= 0.) ? sqrt(v) : _safe_sqrt(v);
}
// Schedule a step event at the specified step_clock time
int32_t __visible
stepcompress_push(struct stepcompress *sc, double print_time, int32_t sdir)
{
int ret = set_next_step_dir(sc, !!sdir);
if (ret)
return ret;
struct queue_append qa = queue_append_start(sc, print_time, 0.5);
ret = queue_append(&qa, 0.);
if (ret)
return ret;
queue_append_finish(qa);
return sdir ? 1 : -1;
}
// Schedule 'steps' number of steps at constant acceleration. If
// acceleration is zero (ie, constant velocity) it uses the formula:
// step_time = print_time + step_num/start_sv
// Otherwise it uses the formula:
// step_time = (print_time + sqrt(2*step_num/accel + (start_sv/accel)**2)
// - start_sv/accel)
int32_t __visible
stepcompress_push_const(
struct stepcompress *sc, double print_time
, double step_offset, double steps, double start_sv, double accel)
{
// Calculate number of steps to take
int sdir = 1;
if (steps < 0) {
sdir = 0;
steps = -steps;
step_offset = -step_offset;
}
int count = steps + .5 - step_offset;
if (count <= 0 || count > 10000000) {
if (count && steps) {
errorf("push_const invalid count %d %f %f %f %f %f"
, stepcompress_get_oid(sc), print_time, step_offset, steps
, start_sv, accel);
return ERROR_RET;
}
return 0;
}
int ret = set_next_step_dir(sc, sdir);
if (ret)
return ret;
int res = sdir ? count : -count;
// Calculate each step time
if (!accel) {
// Move at constant velocity (zero acceleration)
struct queue_append qa = queue_append_start(sc, print_time, .5);
double inv_cruise_sv = stepcompress_get_mcu_freq(sc) / start_sv;
double pos = (step_offset + .5) * inv_cruise_sv;
while (count--) {
ret = queue_append(&qa, pos);
if (ret)
return ret;
pos += inv_cruise_sv;
}
queue_append_finish(qa);
} else {
// Move with constant acceleration
double inv_accel = 1. / accel;
double mcu_freq = stepcompress_get_mcu_freq(sc);
double accel_time = start_sv * inv_accel * mcu_freq;
struct queue_append qa = queue_append_start(
sc, print_time, 0.5 - accel_time);
double accel_multiplier = 2. * inv_accel * mcu_freq * mcu_freq;
double pos = (step_offset + .5)*accel_multiplier + accel_time*accel_time;
while (count--) {
double v = safe_sqrt(pos);
int ret = queue_append(&qa, accel_multiplier >= 0. ? v : -v);
if (ret)
return ret;
pos += accel_multiplier;
}
queue_append_finish(qa);
}
return res;
}

133
klippy/chelper/kin_delta.c Normal file
View File

@ -0,0 +1,133 @@
// Delta kinematics stepper pulse time generation
//
// Copyright (C) 2016-2018 Kevin O'Connor <kevin@koconnor.net>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
#include <math.h> // sqrt
#include "compiler.h" // __visible
#include "pyhelper.h" // errorf
#include "stepcompress.h" // queue_append
// Schedule steps using delta kinematics
static int32_t
_stepcompress_push_delta(
struct stepcompress *sc, int sdir
, double print_time, double move_sd, double start_sv, double accel
, double height, double startxy_sd, double arm_sd, double movez_r)
{
// Calculate number of steps to take
double movexy_r = movez_r ? sqrt(1. - movez_r*movez_r) : 1.;
double arm_sd2 = arm_sd * arm_sd;
double endxy_sd = startxy_sd - movexy_r*move_sd;
double end_height = safe_sqrt(arm_sd2 - endxy_sd*endxy_sd);
int count = (end_height + movez_r*move_sd - height) * (sdir ? 1. : -1.) + .5;
if (count <= 0 || count > 10000000) {
if (count) {
errorf("push_delta invalid count %d %d %f %f %f %f %f %f %f %f"
, stepcompress_get_oid(sc), count, print_time, move_sd
, start_sv, accel, height, startxy_sd, arm_sd, movez_r);
return ERROR_RET;
}
return 0;
}
int ret = set_next_step_dir(sc, sdir);
if (ret)
return ret;
int res = sdir ? count : -count;
// Calculate each step time
height += (sdir ? .5 : -.5);
if (!accel) {
// Move at constant velocity (zero acceleration)
struct queue_append qa = queue_append_start(sc, print_time, .5);
double inv_cruise_sv = stepcompress_get_mcu_freq(sc) / start_sv;
if (!movez_r) {
// Optimized case for common XY only moves (no Z movement)
while (count--) {
double v = safe_sqrt(arm_sd2 - height*height);
double pos = startxy_sd + (sdir ? -v : v);
int ret = queue_append(&qa, pos * inv_cruise_sv);
if (ret)
return ret;
height += (sdir ? 1. : -1.);
}
} else if (!movexy_r) {
// Optimized case for Z only moves
double pos = ((sdir ? height-end_height : end_height-height)
* inv_cruise_sv);
while (count--) {
int ret = queue_append(&qa, pos);
if (ret)
return ret;
pos += inv_cruise_sv;
}
} else {
// General case (handles XY+Z moves)
double start_pos = movexy_r*startxy_sd, zoffset = movez_r*startxy_sd;
while (count--) {
double relheight = movexy_r*height - zoffset;
double v = safe_sqrt(arm_sd2 - relheight*relheight);
double pos = start_pos + movez_r*height + (sdir ? -v : v);
int ret = queue_append(&qa, pos * inv_cruise_sv);
if (ret)
return ret;
height += (sdir ? 1. : -1.);
}
}
queue_append_finish(qa);
} else {
// Move with constant acceleration
double start_pos = movexy_r*startxy_sd, zoffset = movez_r*startxy_sd;
double mcu_freq = stepcompress_get_mcu_freq(sc);
double inv_accel = 1. / accel;
start_pos += 0.5 * start_sv*start_sv * inv_accel;
struct queue_append qa = queue_append_start(
sc, print_time, 0.5 - start_sv * inv_accel * mcu_freq);
double accel_multiplier = 2. * inv_accel * mcu_freq * mcu_freq;
while (count--) {
double relheight = movexy_r*height - zoffset;
double v = safe_sqrt(arm_sd2 - relheight*relheight);
double pos = start_pos + movez_r*height + (sdir ? -v : v);
v = safe_sqrt(pos * accel_multiplier);
int ret = queue_append(&qa, accel_multiplier >= 0. ? v : -v);
if (ret)
return ret;
height += (sdir ? 1. : -1.);
}
queue_append_finish(qa);
}
return res;
}
int32_t __visible
stepcompress_push_delta(
struct stepcompress *sc, double print_time, double move_sd
, double start_sv, double accel
, double height, double startxy_sd, double arm_sd, double movez_r)
{
double reversexy_sd = startxy_sd + arm_sd*movez_r;
if (reversexy_sd <= 0.)
// All steps are in down direction
return _stepcompress_push_delta(
sc, 0, print_time, move_sd, start_sv, accel
, height, startxy_sd, arm_sd, movez_r);
double movexy_r = movez_r ? sqrt(1. - movez_r*movez_r) : 1.;
if (reversexy_sd >= move_sd * movexy_r)
// All steps are in up direction
return _stepcompress_push_delta(
sc, 1, print_time, move_sd, start_sv, accel
, height, startxy_sd, arm_sd, movez_r);
// Steps in both up and down direction
int res1 = _stepcompress_push_delta(
sc, 1, print_time, reversexy_sd / movexy_r, start_sv, accel
, height, startxy_sd, arm_sd, movez_r);
if (res1 == ERROR_RET)
return res1;
int res2 = _stepcompress_push_delta(
sc, 0, print_time, move_sd, start_sv, accel
, height + res1, startxy_sd, arm_sd, movez_r);
if (res2 == ERROR_RET)
return res2;
return res1 + res2;
}

View File

@ -14,7 +14,6 @@
// This code is written in C (instead of python) for processing
// efficiency - the repetitive integer math is vastly faster in C.
#include <math.h> // sqrt
#include <stddef.h> // offsetof
#include <stdint.h> // uint32_t
#include <stdio.h> // fprintf
@ -23,6 +22,7 @@
#include "compiler.h" // DIV_ROUND_UP
#include "pyhelper.h" // errorf
#include "serialqueue.h" // struct queue_message
#include "stepcompress.h" // stepcompress_alloc
#define CHECK_LINES 1
#define QUEUE_START_SIZE 1024
@ -186,8 +186,6 @@ compress_bisect_add(struct stepcompress *sc)
* Step compress checking
****************************************************************/
#define ERROR_RET -989898989
// Verify that a given 'step_move' matches the actual step times
static int
check_line(struct stepcompress *sc, struct step_move move)
@ -309,7 +307,7 @@ stepcompress_flush_far(struct stepcompress *sc, uint64_t abs_step_clock)
}
// Send the set_next_step_dir command
static int
int
set_next_step_dir(struct stepcompress *sc, int sdir)
{
if (sc->sdir == sdir)
@ -373,22 +371,28 @@ stepcompress_set_time(struct stepcompress *sc
sc->mcu_freq = mcu_freq;
}
double
stepcompress_get_mcu_freq(struct stepcompress *sc)
{
return sc->mcu_freq;
}
uint32_t
stepcompress_get_oid(struct stepcompress *sc)
{
return sc->oid;
}
/****************************************************************
* Queue management
****************************************************************/
struct queue_append {
struct stepcompress *sc;
uint32_t *qnext, *qend, last_step_clock_32;
double clock_offset;
};
// Maximium clock delta between messages in the queue
#define CLOCK_DIFF_MAX (3<<28)
// Create a cursor for inserting clock times into the queue
static inline struct queue_append
inline struct queue_append
queue_append_start(struct stepcompress *sc, double print_time, double adjust)
{
double print_clock = (print_time - sc->mcu_time_offset) * sc->mcu_freq;
@ -399,7 +403,7 @@ queue_append_start(struct stepcompress *sc, double print_time, double adjust)
}
// Finalize a cursor created with queue_append_start()
static inline void
inline void
queue_append_finish(struct queue_append qa)
{
qa.sc->queue_next = qa.qnext;
@ -453,7 +457,7 @@ queue_append_slow(struct stepcompress *sc, double rel_sc)
}
// Add a clock time to the queue (flushing the queue if needed)
static inline int
inline int
queue_append(struct queue_append *qa, double step_clock)
{
double rel_sc = step_clock + qa->clock_offset;
@ -476,235 +480,6 @@ queue_append(struct queue_append *qa, double step_clock)
}
/****************************************************************
* Motion to step conversions
****************************************************************/
// Common suffixes: _sd is step distance (a unit length the same
// distance the stepper moves on each step), _sv is step velocity (in
// units of step distance per time), _sd2 is step distance squared, _r
// is ratio (scalar usually between 0.0 and 1.0). Times are in
// seconds and acceleration is in units of step distance per second
// squared.
// Wrapper around sqrt() to handle small negative numbers
static double
_safe_sqrt(double v)
{
// Due to floating point truncation, it's possible to get a small
// negative number - treat it as zero.
if (v < -0.001)
errorf("safe_sqrt of %.9f", v);
return 0.;
}
static inline double safe_sqrt(double v) {
return likely(v >= 0.) ? sqrt(v) : _safe_sqrt(v);
}
// Schedule a step event at the specified step_clock time
int32_t __visible
stepcompress_push(struct stepcompress *sc, double print_time, int32_t sdir)
{
int ret = set_next_step_dir(sc, !!sdir);
if (ret)
return ret;
struct queue_append qa = queue_append_start(sc, print_time, 0.5);
ret = queue_append(&qa, 0.);
if (ret)
return ret;
queue_append_finish(qa);
return sdir ? 1 : -1;
}
// Schedule 'steps' number of steps at constant acceleration. If
// acceleration is zero (ie, constant velocity) it uses the formula:
// step_time = print_time + step_num/start_sv
// Otherwise it uses the formula:
// step_time = (print_time + sqrt(2*step_num/accel + (start_sv/accel)**2)
// - start_sv/accel)
int32_t __visible
stepcompress_push_const(
struct stepcompress *sc, double print_time
, double step_offset, double steps, double start_sv, double accel)
{
// Calculate number of steps to take
int sdir = 1;
if (steps < 0) {
sdir = 0;
steps = -steps;
step_offset = -step_offset;
}
int count = steps + .5 - step_offset;
if (count <= 0 || count > 10000000) {
if (count && steps) {
errorf("push_const invalid count %d %f %f %f %f %f"
, sc->oid, print_time, step_offset, steps
, start_sv, accel);
return ERROR_RET;
}
return 0;
}
int ret = set_next_step_dir(sc, sdir);
if (ret)
return ret;
int res = sdir ? count : -count;
// Calculate each step time
if (!accel) {
// Move at constant velocity (zero acceleration)
struct queue_append qa = queue_append_start(sc, print_time, .5);
double inv_cruise_sv = sc->mcu_freq / start_sv;
double pos = (step_offset + .5) * inv_cruise_sv;
while (count--) {
ret = queue_append(&qa, pos);
if (ret)
return ret;
pos += inv_cruise_sv;
}
queue_append_finish(qa);
} else {
// Move with constant acceleration
double inv_accel = 1. / accel;
double accel_time = start_sv * inv_accel * sc->mcu_freq;
struct queue_append qa = queue_append_start(
sc, print_time, 0.5 - accel_time);
double accel_multiplier = 2. * inv_accel * sc->mcu_freq * sc->mcu_freq;
double pos = (step_offset + .5)*accel_multiplier + accel_time*accel_time;
while (count--) {
double v = safe_sqrt(pos);
int ret = queue_append(&qa, accel_multiplier >= 0. ? v : -v);
if (ret)
return ret;
pos += accel_multiplier;
}
queue_append_finish(qa);
}
return res;
}
// Schedule steps using delta kinematics
static int32_t
_stepcompress_push_delta(
struct stepcompress *sc, int sdir
, double print_time, double move_sd, double start_sv, double accel
, double height, double startxy_sd, double arm_sd, double movez_r)
{
// Calculate number of steps to take
double movexy_r = movez_r ? sqrt(1. - movez_r*movez_r) : 1.;
double arm_sd2 = arm_sd * arm_sd;
double endxy_sd = startxy_sd - movexy_r*move_sd;
double end_height = safe_sqrt(arm_sd2 - endxy_sd*endxy_sd);
int count = (end_height + movez_r*move_sd - height) * (sdir ? 1. : -1.) + .5;
if (count <= 0 || count > 10000000) {
if (count) {
errorf("push_delta invalid count %d %d %f %f %f %f %f %f %f %f"
, sc->oid, count, print_time, move_sd, start_sv, accel
, height, startxy_sd, arm_sd, movez_r);
return ERROR_RET;
}
return 0;
}
int ret = set_next_step_dir(sc, sdir);
if (ret)
return ret;
int res = sdir ? count : -count;
// Calculate each step time
height += (sdir ? .5 : -.5);
if (!accel) {
// Move at constant velocity (zero acceleration)
struct queue_append qa = queue_append_start(sc, print_time, .5);
double inv_cruise_sv = sc->mcu_freq / start_sv;
if (!movez_r) {
// Optimized case for common XY only moves (no Z movement)
while (count--) {
double v = safe_sqrt(arm_sd2 - height*height);
double pos = startxy_sd + (sdir ? -v : v);
int ret = queue_append(&qa, pos * inv_cruise_sv);
if (ret)
return ret;
height += (sdir ? 1. : -1.);
}
} else if (!movexy_r) {
// Optimized case for Z only moves
double pos = ((sdir ? height-end_height : end_height-height)
* inv_cruise_sv);
while (count--) {
int ret = queue_append(&qa, pos);
if (ret)
return ret;
pos += inv_cruise_sv;
}
} else {
// General case (handles XY+Z moves)
double start_pos = movexy_r*startxy_sd, zoffset = movez_r*startxy_sd;
while (count--) {
double relheight = movexy_r*height - zoffset;
double v = safe_sqrt(arm_sd2 - relheight*relheight);
double pos = start_pos + movez_r*height + (sdir ? -v : v);
int ret = queue_append(&qa, pos * inv_cruise_sv);
if (ret)
return ret;
height += (sdir ? 1. : -1.);
}
}
queue_append_finish(qa);
} else {
// Move with constant acceleration
double start_pos = movexy_r*startxy_sd, zoffset = movez_r*startxy_sd;
double inv_accel = 1. / accel;
start_pos += 0.5 * start_sv*start_sv * inv_accel;
struct queue_append qa = queue_append_start(
sc, print_time, 0.5 - start_sv * inv_accel * sc->mcu_freq);
double accel_multiplier = 2. * inv_accel * sc->mcu_freq * sc->mcu_freq;
while (count--) {
double relheight = movexy_r*height - zoffset;
double v = safe_sqrt(arm_sd2 - relheight*relheight);
double pos = start_pos + movez_r*height + (sdir ? -v : v);
v = safe_sqrt(pos * accel_multiplier);
int ret = queue_append(&qa, accel_multiplier >= 0. ? v : -v);
if (ret)
return ret;
height += (sdir ? 1. : -1.);
}
queue_append_finish(qa);
}
return res;
}
int32_t __visible
stepcompress_push_delta(
struct stepcompress *sc, double print_time, double move_sd
, double start_sv, double accel
, double height, double startxy_sd, double arm_sd, double movez_r)
{
double reversexy_sd = startxy_sd + arm_sd*movez_r;
if (reversexy_sd <= 0.)
// All steps are in down direction
return _stepcompress_push_delta(
sc, 0, print_time, move_sd, start_sv, accel
, height, startxy_sd, arm_sd, movez_r);
double movexy_r = movez_r ? sqrt(1. - movez_r*movez_r) : 1.;
if (reversexy_sd >= move_sd * movexy_r)
// All steps are in up direction
return _stepcompress_push_delta(
sc, 1, print_time, move_sd, start_sv, accel
, height, startxy_sd, arm_sd, movez_r);
// Steps in both up and down direction
int res1 = _stepcompress_push_delta(
sc, 1, print_time, reversexy_sd / movexy_r, start_sv, accel
, height, startxy_sd, arm_sd, movez_r);
if (res1 == ERROR_RET)
return res1;
int res2 = _stepcompress_push_delta(
sc, 0, print_time, move_sd, start_sv, accel
, height + res1, startxy_sd, arm_sd, movez_r);
if (res2 == ERROR_RET)
return res2;
return res1 + res2;
}
/****************************************************************
* Step compress synchronization
****************************************************************/

View File

@ -0,0 +1,40 @@
#ifndef STEPCOMPRESS_H
#define STEPCOMPRESS_H
#include <stdint.h> // uint32_t
#define ERROR_RET -989898989
struct stepcompress *stepcompress_alloc(
uint32_t max_error, uint32_t queue_step_msgid
, uint32_t set_next_step_dir_msgid, uint32_t invert_sdir, uint32_t oid);
void stepcompress_free(struct stepcompress *sc);
int set_next_step_dir(struct stepcompress *sc, int sdir);
int stepcompress_reset(struct stepcompress *sc, uint64_t last_step_clock);
int stepcompress_set_homing(struct stepcompress *sc, uint64_t homing_clock);
int stepcompress_queue_msg(struct stepcompress *sc, uint32_t *data, int len);
double stepcompress_get_mcu_freq(struct stepcompress *sc);
uint32_t stepcompress_get_oid(struct stepcompress *sc);
struct queue_append {
struct stepcompress *sc;
uint32_t *qnext, *qend, last_step_clock_32;
double clock_offset;
};
struct queue_append queue_append_start(
struct stepcompress *sc, double print_time, double adjust);
void queue_append_finish(struct queue_append qa);
int queue_append(struct queue_append *qa, double step_clock);
struct serialqueue;
struct steppersync *steppersync_alloc(
struct serialqueue *sq, struct stepcompress **sc_list, int sc_num
, int move_num);
void steppersync_free(struct steppersync *ss);
void steppersync_set_time(struct steppersync *ss, double time_offset
, double mcu_freq);
int steppersync_flush(struct steppersync *ss, uint64_t move_clock);
double safe_sqrt(double v);
#endif // stepcompress.h