gcode_arcs: Add support for G2/G3 commands

R Still missing, also might be somewhat dirty since code is converted
into G1 commands.

Signed-off-by: Aleksej Vasiljkovic <achmed21@gmail.com>
Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
This commit is contained in:
Aleksej Vasiljkovic 2019-08-21 21:44:45 +02:00 committed by Kevin O'Connor
parent 60ae92d143
commit 7d8c70363a
2 changed files with 196 additions and 0 deletions

View File

@ -1801,3 +1801,13 @@
# A list of G-Code commands to execute when the delay duration has
# elapsed. G-Code templates are supported. This parameter must be
# provided.
# enables arc (G2/G3) commands. Only IJ version is supported
# example: "G2 X125 Y32 Z10 E5 I10.5 J10.5"
#[gcode_arcs]
#resolution: 1.0
# An Arc will be split in segments. Each segment will in x mm set here.
# Lower values will producse a finer arc, but also more to do for
# your machine. This also means that arcs smaller then this value
# will be a line only

186
klippy/extras/gcode_arcs.py Normal file
View File

@ -0,0 +1,186 @@
# adds support fro ARC commands via G2/G3
#
# Copyright (C) 2019 Aleksej Vasiljkovic <achmed21@gmail.com>
#
# function planArc() originates from https://github.com/MarlinFirmware/Marlin
# Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
#
# This file may be distributed under the terms of the GNU GPLv3 license.
# uses the plan_arc function from marlin which does steps in mm rather then
# in degrees. # Coordinates created by this are converted into G1 commands.
#
# note: only IJ version available
import math
import re
class ArcSupport:
def __init__(self, config):
self.printer = config.get_printer()
self.mm_per_arc_segment = config.getfloat('resolution', 1)
self.debug = True #will respond motion to terminal as G1 code
self.gcode = self.printer.lookup_object('gcode')
self.gcode.register_command("G2", self.cmd_G2, desc=self.cmd_G2_help)
self.gcode.register_command("G3", self.cmd_G2, desc=self.cmd_G3_help)
cmd_G2_help = "Counterclockwise rotation move"
cmd_G3_help = "Clockwise rotaion move"
def cmd_G2(self, params):
# set vars
currentPos = self.printer.lookup_object('toolhead').get_position()
asStartX = currentPos[0]
asStartY = currentPos[1]
asStartZ = currentPos[2]
asX = params.get("X", None)
asY = params.get("Y", None)
asZ = params.get("Z", None)
asR = float(params.get("R", 0.)) #radius
asI = float(params.get("I", 0.))
asJ = float(params.get("J", 0.))
asE = float(params.get("E", 0.))
asF = float(params.get("F", -1))
# --------- health checks of code -----------
if (asX == None or asY == None):
raise self.gcode.error("g2/g3: Coords missing")
elif asR == 0 and asI == 0 and asJ==0:
raise self.gcode.error("g2/g3: neither R nor I and J given")
elif asR > 0 and (asI !=0 or asJ!=0):
raise self.gcode.error("g2/g3: R, I and J were given. Invalid")
else: # -------- execute conversion -----------
coords = []
clockwise = params['#command'].lower().startswith("g2")
asY = float(asY)
asX = float(asX)
# use radius
# if asR > 0:
# not sure if neccessary since R barely seems to be used
# use IJK
if asI != 0 or asJ!=0:
coords = self.planArc(currentPos,
[asX,asY,0.,0.],
[asI, asJ],
clockwise)
###############################
# converting coords into G1 codes (lazy aproch)
if len(coords)>0:
# build dict and call cmd_G1
for coord in coords:
g1_params = {'X': coord[0], 'Y': coord[1]}
if asZ:
g1_params['Z']= float(asZ)/len(coords)
if asE>0:
g1_params['E']= float(asE)/len(coords)
if asF>0:
g1_params['F']= asF
self.gcode.cmd_G1(g1_params)
else:
self.gcode.respond_info(
"could not tranlate from '" + params['#original'] + "'")
# function planArc() originates from marlin plan_arc()
# https://github.com/MarlinFirmware/Marlin
#
# The arc is approximated by generating many small linear segments.
# The length of each segment is configured in MM_PER_ARC_SEGMENT
# Arcs smaller then this value, will be a Line only
def planArc(
self,
currentPos,
targetPos=[0.,0.,0.,0.],
offset=[0.,0.],
clockwise=False):
# todo: sometimes produces full circles
coords = []
MM_PER_ARC_SEGMENT = self.mm_per_arc_segment
X_AXIS = 0
Y_AXIS = 1
Z_AXIS = 2
# Radius vector from center to current location
r_P = offset[0]*-1
r_Q = offset[1]*-1
radius = math.hypot(r_P, r_Q)
center_P = currentPos[X_AXIS] - r_P
center_Q = currentPos[Y_AXIS] - r_Q
rt_X = targetPos[X_AXIS] - center_P
rt_Y = targetPos[Y_AXIS] - center_Q
linear_travel = targetPos[Z_AXIS] - currentPos[Z_AXIS]
angular_travel = math.atan2(r_P * rt_Y - r_Q * rt_X,
r_P * rt_X + r_Q * rt_Y)
if (angular_travel < 0): angular_travel+= math.radians(360)
if (clockwise): angular_travel-= math.radians(360)
# Make a circle if the angular rotation is 0
# and the target is current position
if (angular_travel == 0
and currentPos[X_AXIS] == targetPos[X_AXIS]
and currentPos[Y_AXIS] == targetPos[Y_AXIS]):
angular_travel = math.radians(360)
flat_mm = radius * angular_travel
mm_of_travel = linear_travel
if(mm_of_travel == linear_travel):
mm_of_travel = math.hypot(flat_mm, linear_travel)
else:
mm_of_travel = math.abs(flat_mm)
if (mm_of_travel < 0.001):
return coords
segments = int(math.floor(mm_of_travel / (MM_PER_ARC_SEGMENT)))
if(segments<1):
segments=1
raw = [0.,0.,0.,0.]
theta_per_segment = float(angular_travel / segments)
linear_per_segment = float(linear_travel / segments)
# Initialize the linear axis
raw[Z_AXIS] = currentPos[Z_AXIS];
for i in range(1,segments+1):
cos_Ti = math.cos(i * theta_per_segment)
sin_Ti = math.sin(i * theta_per_segment)
r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti
r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti
raw[X_AXIS] = center_P + r_P
raw[Y_AXIS] = center_Q + r_Q
raw[Z_AXIS] += linear_per_segment
coords.append([raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS] ])
return coords
def load_config(config):
return ArcSupport(config)