homing: Implement homing via new toolhead "drip" movement

Rework the low-level implementation of homing movement.  The existing
mechanism buffers all homing movement into the micro-controller prior
to starting the home.  Replace with a system that buffers all movement
into the host look-ahead buffer and then "drip feed" those moves to
the micro-controllers.  Then clear the host look-ahead buffer when all
endstops trigger.

Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
This commit is contained in:
Kevin O'Connor 2019-06-25 21:25:01 -04:00 committed by KevinOConnor
parent d6cce8a557
commit 43064d197d
4 changed files with 104 additions and 40 deletions

View File

@ -157,10 +157,11 @@ class BLTouchEndstopWrapper:
if s.get_mcu_position() == mcu_pos: if s.get_mcu_position() == mcu_pos:
raise homing.EndstopError("BLTouch failed to deploy") raise homing.EndstopError("BLTouch failed to deploy")
self.mcu_endstop.home_finalize() self.mcu_endstop.home_finalize()
def home_start(self, print_time, sample_time, sample_count, rest_time): def home_start(self, print_time, sample_time, sample_count, rest_time,
notify=None):
rest_time = min(rest_time, ENDSTOP_REST_TIME) rest_time = min(rest_time, ENDSTOP_REST_TIME)
self.mcu_endstop.home_start( self.mcu_endstop.home_start(print_time, sample_time, sample_count,
print_time, sample_time, sample_count, rest_time) rest_time, notify=notify)
def get_position_endstop(self): def get_position_endstop(self):
return self.position_endstop return self.position_endstop
cmd_BLTOUCH_DEBUG_help = "Send a command to the bltouch for debugging" cmd_BLTOUCH_DEBUG_help = "Send a command to the bltouch for debugging"

View File

@ -16,6 +16,7 @@ class Homing:
self.toolhead = printer.lookup_object('toolhead') self.toolhead = printer.lookup_object('toolhead')
self.changed_axes = [] self.changed_axes = []
self.verify_retract = True self.verify_retract = True
self.endstops_pending = -1
def set_no_verify_retract(self): def set_no_verify_retract(self):
self.verify_retract = False self.verify_retract = False
def set_axes(self, axes): def set_axes(self, axes):
@ -39,6 +40,10 @@ class Homing:
dist_ticks = adjusted_freq * mcu_stepper.get_step_dist() dist_ticks = adjusted_freq * mcu_stepper.get_step_dist()
ticks_per_step = math.ceil(dist_ticks / speed) ticks_per_step = math.ceil(dist_ticks / speed)
return dist_ticks / ticks_per_step return dist_ticks / ticks_per_step
def _endstop_notify(self):
self.endstops_pending -= 1
if not self.endstops_pending:
self.toolhead.signal_drip_mode_end()
def homing_move(self, movepos, endstops, speed, dwell_t=0., def homing_move(self, movepos, endstops, speed, dwell_t=0.,
probe_pos=False, verify_movement=False): probe_pos=False, verify_movement=False):
# Notify endstops of upcoming home # Notify endstops of upcoming home
@ -50,22 +55,22 @@ class Homing:
print_time = self.toolhead.get_last_move_time() print_time = self.toolhead.get_last_move_time()
start_mcu_pos = [(s, name, s.get_mcu_position()) start_mcu_pos = [(s, name, s.get_mcu_position())
for es, name in endstops for s in es.get_steppers()] for es, name in endstops for s in es.get_steppers()]
self.endstops_pending = len(endstops)
for mcu_endstop, name in endstops: for mcu_endstop, name in endstops:
min_step_dist = min([s.get_step_dist() min_step_dist = min([s.get_step_dist()
for s in mcu_endstop.get_steppers()]) for s in mcu_endstop.get_steppers()])
mcu_endstop.home_start( mcu_endstop.home_start(
print_time, ENDSTOP_SAMPLE_TIME, ENDSTOP_SAMPLE_COUNT, print_time, ENDSTOP_SAMPLE_TIME, ENDSTOP_SAMPLE_COUNT,
min_step_dist / speed) min_step_dist / speed, notify=self._endstop_notify)
self.toolhead.dwell(HOMING_START_DELAY, check_stall=False) self.toolhead.dwell(HOMING_START_DELAY)
# Issue move # Issue move
error = None error = None
try: try:
self.toolhead.move(movepos, speed) self.toolhead.drip_move(movepos, speed)
except CommandError as e: except CommandError as e:
error = "Error during homing move: %s" % (str(e),) error = "Error during homing move: %s" % (str(e),)
# Wait for endstops to trigger # Wait for endstops to trigger
move_end_print_time = self.toolhead.get_last_move_time() move_end_print_time = self.toolhead.get_last_move_time()
self.toolhead.reset_print_time(print_time)
for mcu_endstop, name in endstops: for mcu_endstop, name in endstops:
try: try:
mcu_endstop.home_wait(move_end_print_time) mcu_endstop.home_wait(move_end_print_time)

View File

@ -1,6 +1,6 @@
# Interface to Klipper micro-controller code # Interface to Klipper micro-controller code
# #
# Copyright (C) 2016-2018 Kevin O'Connor <kevin@koconnor.net> # Copyright (C) 2016-2019 Kevin O'Connor <kevin@koconnor.net>
# #
# This file may be distributed under the terms of the GNU GPLv3 license. # This file may be distributed under the terms of the GNU GPLv3 license.
import sys, os, zlib, logging, math import sys, os, zlib, logging, math
@ -149,8 +149,9 @@ class MCU_endstop:
self._oid = self._home_cmd = self._query_cmd = None self._oid = self._home_cmd = self._query_cmd = None
self._mcu.register_config_callback(self._build_config) self._mcu.register_config_callback(self._build_config)
self._min_query_time = self._last_sent_time = 0. self._min_query_time = self._last_sent_time = 0.
self._next_query_print_time = 0. self._next_query_print_time = self._end_home_time = 0.
self._completion = None self._trigger_completion = self._home_completion = None
self._trigger_notify = None
def get_mcu(self): def get_mcu(self):
return self._mcu return self._mcu
def add_stepper(self, stepper): def add_stepper(self, stepper):
@ -182,21 +183,24 @@ class MCU_endstop:
def home_prepare(self): def home_prepare(self):
pass pass
def home_start(self, print_time, sample_time, sample_count, rest_time, def home_start(self, print_time, sample_time, sample_count, rest_time,
triggered=True): triggered=True, notify=None):
clock = self._mcu.print_time_to_clock(print_time) clock = self._mcu.print_time_to_clock(print_time)
rest_ticks = int(rest_time * self._mcu.get_adjusted_freq()) rest_ticks = int(rest_time * self._mcu.get_adjusted_freq())
self._trigger_notify = notify
self._next_query_print_time = print_time + self.RETRY_QUERY self._next_query_print_time = print_time + self.RETRY_QUERY
self._min_query_time = self._reactor.monotonic() self._min_query_time = self._reactor.monotonic()
self._last_sent_time = 0. self._last_sent_time = 0.
self._completion = self._reactor.completion() self._home_end_time = self._reactor.NEVER
self._trigger_completion = self._reactor.completion()
self._home_completion = self._reactor.completion()
self._mcu.register_response(self._handle_end_stop_state, self._mcu.register_response(self._handle_end_stop_state,
"end_stop_state", self._oid) "end_stop_state", self._oid)
self._home_cmd.send( self._home_cmd.send(
[self._oid, clock, self._mcu.seconds_to_clock(sample_time), [self._oid, clock, self._mcu.seconds_to_clock(sample_time),
sample_count, rest_ticks, triggered ^ self._invert], sample_count, rest_ticks, triggered ^ self._invert],
reqclock=clock) reqclock=clock)
for s in self._steppers: self._home_completion = self._reactor.register_callback(
s.note_homing_start(clock) self._home_retry)
def _handle_end_stop_state(self, params): def _handle_end_stop_state(self, params):
logging.debug("end_stop_state %s", params) logging.debug("end_stop_state %s", params)
if params['#sent_time'] >= self._min_query_time: if params['#sent_time'] >= self._min_query_time:
@ -204,36 +208,36 @@ class MCU_endstop:
self._last_sent_time = params['#sent_time'] self._last_sent_time = params['#sent_time']
else: else:
self._min_query_time = self._reactor.NEVER self._min_query_time = self._reactor.NEVER
self._reactor.async_complete(self._completion, params) self._reactor.async_complete(self._trigger_completion, params)
def home_wait(self, home_end_time): def _home_retry(self, eventtime):
if self._mcu.is_fileoutput(): if self._mcu.is_fileoutput():
self._completion.complete({}) return True
curtime = self._reactor.monotonic()
while 1: while 1:
params = self._completion.wait(curtime + 0.100) params = self._trigger_completion.wait(eventtime + 0.100)
if params is not None: if params is not None:
# Homing completed successfully # Homing completed successfully
self._mcu.register_response(None, "end_stop_state", self._oid) if self._trigger_notify is not None:
for s in self._steppers: self._trigger_notify()
s.note_homing_end(did_trigger=True) return True
return
# Check for timeout # Check for timeout
last = self._mcu.estimated_print_time(self._last_sent_time) last = self._mcu.estimated_print_time(self._last_sent_time)
if last > home_end_time: if last > self._home_end_time or self._mcu.is_shutdown():
# Timeout - disable endstop checking return False
self._mcu.register_response(None, "end_stop_state", self._oid)
for s in self._steppers:
s.note_homing_end()
self._home_cmd.send([self._oid, 0, 0, 0, 0, 0])
raise self.TimeoutError("Timeout during endstop homing")
# Check for resend # Check for resend
curtime = self._reactor.monotonic() eventtime = self._reactor.monotonic()
est_print_time = self._mcu.estimated_print_time(curtime) est_print_time = self._mcu.estimated_print_time(eventtime)
if est_print_time >= self._next_query_print_time: if est_print_time >= self._next_query_print_time:
self._next_query_print_time = est_print_time + self.RETRY_QUERY self._next_query_print_time = est_print_time + self.RETRY_QUERY
self._query_cmd.send([self._oid]) self._query_cmd.send([self._oid])
if self._mcu.is_shutdown(): def home_wait(self, home_end_time):
raise error("MCU is shutdown") self._home_end_time = home_end_time
did_trigger = self._home_completion.wait()
self._mcu.register_response(None, "end_stop_state", self._oid)
self._home_cmd.send([self._oid, 0, 0, 0, 0, 0])
for s in self._steppers:
s.note_homing_end(did_trigger=did_trigger)
if not did_trigger:
raise self.TimeoutError("Timeout during endstop homing")
def home_finalize(self): def home_finalize(self):
pass pass
def query_endstop(self, print_time): def query_endstop(self, print_time):

View File

@ -194,6 +194,11 @@ class MoveQueue:
STALL_TIME = 0.100 STALL_TIME = 0.100
DRIP_SEGMENT_TIME = 0.050
DRIP_TIME = 0.150
class DripModeEndSignal(Exception):
pass
# Main code to track events (and their timing) on the printer toolhead # Main code to track events (and their timing) on the printer toolhead
class ToolHead: class ToolHead:
def __init__(self, config): def __init__(self, config):
@ -238,6 +243,7 @@ class ToolHead:
self.last_print_start_time = 0. self.last_print_start_time = 0.
self.idle_flush_print_time = 0. self.idle_flush_print_time = 0.
self.print_stall = 0 self.print_stall = 0
self.drip_completion = None
# Setup iterative solver # Setup iterative solver
ffi_main, ffi_lib = chelper.get_ffi() ffi_main, ffi_lib = chelper.get_ffi()
self.cmove = ffi_main.gc(ffi_lib.move_alloc(), ffi_lib.free) self.cmove = ffi_main.gc(ffi_lib.move_alloc(), ffi_lib.free)
@ -282,7 +288,19 @@ class ToolHead:
self.printer.send_event("toolhead:sync_print_time", self.printer.send_event("toolhead:sync_print_time",
curtime, est_print_time, self.print_time) curtime, est_print_time, self.print_time)
def get_next_move_time(self): def get_next_move_time(self):
if self.special_queuing_state: if not self.special_queuing_state:
return self.print_time
if self.special_queuing_state == "Drip":
# In "Drip" state - wait until ready to send next move
while 1:
if self.drip_completion.test():
raise DripModeEndSignal()
curtime = self.reactor.monotonic()
est_print_time = self.mcu.estimated_print_time(curtime)
wait_time = self.print_time - est_print_time - DRIP_TIME
if wait_time <= 0. or self.mcu.is_fileoutput():
return self.print_time
self.drip_completion.wait(curtime + wait_time)
# Transition from "Flushed"/"Priming" state to main state # Transition from "Flushed"/"Priming" state to main state
self.special_queuing_state = "" self.special_queuing_state = ""
self.need_check_stall = -1. self.need_check_stall = -1.
@ -405,6 +423,42 @@ class ToolHead:
self.commanded_pos[3] = extrude_pos self.commanded_pos[3] = extrude_pos
def get_extruder(self): def get_extruder(self):
return self.extruder return self.extruder
def drip_move(self, newpos, speed):
# Validate move
move = Move(self, self.commanded_pos, newpos, speed)
if move.axes_d[3]:
raise homing.CommandError("Invalid drip move")
if not move.move_d or not move.is_kinematic_move:
return
self.kin.check_move(move)
speed = math.sqrt(move.max_cruise_v2)
# Transition to "Flushed" state and then to "Drip" state
self._full_flush()
self.special_queuing_state = "Drip"
self.need_check_stall = self.reactor.NEVER
self.reactor.update_timer(self.flush_timer, self.reactor.NEVER)
self.move_queue.set_flush_time(self.reactor.NEVER)
self.drip_completion = self.reactor.completion()
# Split move into many tiny moves and queue them
num_moves = max(1, int(math.ceil(move.min_move_t / DRIP_SEGMENT_TIME)))
inv_num_moves = 1. / float(num_moves)
submove_d = [d * inv_num_moves for d in move.axes_d]
prev_pos = move.start_pos
for i in range(num_moves-1):
next_pos = [p + d for p, d in zip(prev_pos, submove_d)]
self.move_queue.add_move(Move(self, prev_pos, next_pos, speed))
prev_pos = next_pos
self.move_queue.add_move(Move(self, prev_pos, move.end_pos, speed))
# Transmit moves
self._calc_print_time()
try:
self.move_queue.flush()
except DripModeEndSignal as e:
self.move_queue.reset()
# Return to "Flushed" state
self._full_flush()
def signal_drip_mode_end(self):
self.drip_completion.complete(True)
# Misc commands # Misc commands
def stats(self, eventtime): def stats(self, eventtime):
for m in self.all_mcus: for m in self.all_mcus: