klipper-dgus/klippy/delta.py

298 lines
13 KiB
Python
Raw Normal View History

# Code for handling the kinematics of linear delta robots
#
# Copyright (C) 2016 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math, logging
import stepper, homing
StepList = (0, 1, 2)
# Slow moves once the ratio of tower to XY movement exceeds SLOW_RATIO
SLOW_RATIO = 3.
class DeltaKinematics:
def __init__(self, printer, config):
self.config = config
self.steppers = [stepper.PrinterStepper(
printer, config.getsection('stepper_' + n), n)
for n in ['a', 'b', 'c']]
self.need_motor_enable = self.need_home = True
self.max_velocity = self.max_z_velocity = self.max_accel = 0.
radius = config.getfloat('delta_radius')
arm_length = config.getfloat('delta_arm_length')
self.arm_length2 = arm_length**2
self.limit_xy2 = -1.
tower_height_at_zeros = math.sqrt(self.arm_length2 - radius**2)
self.max_z = max([s.position_endstop for s in self.steppers])
self.limit_z = self.max_z - (arm_length - tower_height_at_zeros)
logging.info(
"Delta max build height %.2fmm (radius tapered above %.2fmm)" % (
self.max_z, self.limit_z))
sin = lambda angle: math.sin(math.radians(angle))
cos = lambda angle: math.cos(math.radians(angle))
self.towers = [
(cos(210.)*radius, sin(210.)*radius),
(cos(330.)*radius, sin(330.)*radius),
(cos(90.)*radius, sin(90.)*radius)]
# Find the point where an XY move could result in excessive
# tower movement
half_min_step_dist = min([s.step_dist for s in self.steppers]) * .5
def ratio_to_dist(ratio):
return (ratio * math.sqrt(self.arm_length2 / (ratio**2 + 1.)
- half_min_step_dist**2)
+ half_min_step_dist)
self.slow_xy2 = (ratio_to_dist(SLOW_RATIO) - radius)**2
self.very_slow_xy2 = (ratio_to_dist(2. * SLOW_RATIO) - radius)**2
self.max_xy2 = min(radius, arm_length - radius,
ratio_to_dist(4. * SLOW_RATIO) - radius)**2
logging.info(
"Delta max build radius %.2fmm (moves slowed past %.2fmm and %.2fmm)"
% (math.sqrt(self.max_xy2), math.sqrt(self.slow_xy2),
math.sqrt(self.very_slow_xy2)))
self.set_position([0., 0., 0.])
def set_max_jerk(self, max_xy_halt_velocity, max_velocity, max_accel):
self.max_velocity = max_velocity
max_z_velocity = self.config.getfloat('max_z_velocity', max_velocity)
self.max_z_velocity = min(max_velocity, max_z_velocity)
self.max_accel = max_accel
for stepper in self.steppers:
stepper.set_max_jerk(max_xy_halt_velocity, max_accel)
def _cartesian_to_actuator(self, coord):
return [int((math.sqrt(self.arm_length2
- (self.towers[i][0] - coord[0])**2
- (self.towers[i][1] - coord[1])**2) + coord[2])
* self.steppers[i].inv_step_dist + 0.5)
for i in StepList]
def _actuator_to_cartesian(self, pos):
# Based on code from Smoothieware
tower1 = list(self.towers[0]) + [pos[0]]
tower2 = list(self.towers[1]) + [pos[1]]
tower3 = list(self.towers[2]) + [pos[2]]
s12 = matrix_sub(tower1, tower2)
s23 = matrix_sub(tower2, tower3)
s13 = matrix_sub(tower1, tower3)
normal = matrix_cross(s12, s23)
magsq_s12 = matrix_magsq(s12)
magsq_s23 = matrix_magsq(s23)
magsq_s13 = matrix_magsq(s13)
inv_nmag_sq = 1.0 / matrix_magsq(normal)
q = 0.5 * inv_nmag_sq
a = q * magsq_s23 * matrix_dot(s12, s13)
b = -q * magsq_s13 * matrix_dot(s12, s23) # negate because we use s12 instead of s21
c = q * magsq_s12 * matrix_dot(s13, s23)
circumcenter = [tower1[0] * a + tower2[0] * b + tower3[0] * c,
tower1[1] * a + tower2[1] * b + tower3[1] * c,
tower1[2] * a + tower2[2] * b + tower3[2] * c]
r_sq = 0.5 * q * magsq_s12 * magsq_s23 * magsq_s13
dist = math.sqrt(inv_nmag_sq * (self.arm_length2 - r_sq))
return matrix_sub(circumcenter, matrix_mul(normal, dist))
def set_position(self, newpos):
pos = self._cartesian_to_actuator(newpos)
for i in StepList:
self.steppers[i].mcu_stepper.set_position(pos[i])
self.limit_xy2 = -1.
def home(self, homing_state):
# All axes are homed simultaneously
homing_state.set_axes([0, 1, 2])
s = self.steppers[0] # Assume homing speed same for all steppers
self.need_home = False
# Initial homing
homepos = [0., 0., self.max_z, None]
coord = list(homepos)
coord[2] = -1.5 * math.sqrt(self.arm_length2-self.max_xy2)
homing_state.home(list(coord), homepos, self.steppers, s.homing_speed)
# Retract
coord[2] = homepos[2] - s.homing_retract_dist
homing_state.retract(list(coord), s.homing_speed)
# Home again
coord[2] -= s.homing_retract_dist
homing_state.home(list(coord), homepos, self.steppers
, s.homing_speed/2.0, second_home=True)
# Set final homed position
coord = [(s.mcu_stepper.commanded_position + s.get_homed_offset())
* s.step_dist
for s in self.steppers]
homing_state.set_homed_position(self._actuator_to_cartesian(coord))
def motor_off(self, move_time):
self.limit_xy2 = -1.
for stepper in self.steppers:
stepper.motor_enable(move_time, 0)
self.need_motor_enable = self.need_home = True
def _check_motor_enable(self, move_time):
for i in StepList:
self.steppers[i].motor_enable(move_time, 1)
self.need_motor_enable = False
def query_endstops(self, print_time):
endstops = [(s, s.query_endstop(print_time)) for s in self.steppers]
return [(s.name, es.query_endstop_wait()) for s, es in endstops]
def check_move(self, move):
end_pos = move.end_pos
xy2 = end_pos[0]**2 + end_pos[1]**2
if xy2 <= self.limit_xy2 and not move.axes_d[2]:
# Normal XY move
return
if self.need_home:
raise homing.EndstopMoveError(end_pos, "Must home first")
limit_xy2 = self.max_xy2
if end_pos[2] > self.limit_z:
limit_xy2 = min(limit_xy2, (self.max_z - end_pos[2])**2)
if xy2 > limit_xy2 or end_pos[2] < 0. or end_pos[2] > self.max_z:
raise homing.EndstopMoveError(end_pos)
if move.axes_d[2]:
move.limit_speed(self.max_z_velocity, move.accel)
limit_xy2 = -1.
# Limit the speed/accel of this move if is is at the extreme
# end of the build envelope
extreme_xy2 = max(xy2, move.start_pos[0]**2 + move.start_pos[1]**2)
if extreme_xy2 > self.slow_xy2:
r = 0.5
if extreme_xy2 > self.very_slow_xy2:
r = 0.25
max_velocity = self.max_velocity
if move.axes_d[2]:
max_velocity = self.max_z_velocity
move.limit_speed(max_velocity * r, self.max_accel * r)
limit_xy2 = -1.
self.limit_xy2 = min(limit_xy2, self.slow_xy2)
def move(self, move_time, move):
axes_d = move.axes_d
move_d = movexy_d = move.move_d
movexy_r = 1.
movez_r = 0.
inv_movexy_d = 1. / movexy_d
if not axes_d[0] and not axes_d[1]:
movez_r = axes_d[2] * inv_movexy_d
movexy_d = movexy_r = inv_movexy_d = 0.
elif axes_d[2]:
movexy_d = math.sqrt(axes_d[0]**2 + axes_d[1]**2)
movexy_r = movexy_d * inv_movexy_d
movez_r = axes_d[2] * inv_movexy_d
inv_movexy_d = 1. / movexy_d
if self.need_motor_enable:
self._check_motor_enable(move_time)
origx, origy, origz = move.start_pos[:3]
accel_t = move.accel_t
cruise_end_t = accel_t + move.cruise_t
accel_d = move.accel_r * move_d
cruise_end_d = accel_d + move.cruise_r * move_d
inv_cruise_v = 1. / move.cruise_v
inv_accel = 1. / move.accel
accel_time_offset = move.start_v * inv_accel
accel_multiplier = 2.0 * inv_accel
accel_offset = move.start_v**2 * 0.5 * inv_accel
decel_time_offset = move.cruise_v * inv_accel + cruise_end_t
decel_offset = move.cruise_v**2 * 0.5 * inv_accel + cruise_end_d
for i in StepList:
# Find point on line of movement closest to tower
towerx_d = self.towers[i][0] - origx
towery_d = self.towers[i][1] - origy
closestxy_d = (towerx_d*axes_d[0] + towery_d*axes_d[1])*inv_movexy_d
tangentxy_d2 = towerx_d**2 + towery_d**2 - closestxy_d**2
closest_height2 = self.arm_length2 - tangentxy_d2
# Calculate accel/cruise/decel portions of move
reversexy_d = closestxy_d + math.sqrt(closest_height2)*movez_r
accel_up_d = cruise_up_d = decel_up_d = 0.
accel_down_d = cruise_down_d = decel_down_d = 0.
if reversexy_d <= 0.:
accel_down_d = accel_d
cruise_down_d = cruise_end_d
decel_down_d = move_d
elif reversexy_d >= movexy_d:
accel_up_d = accel_d
cruise_up_d = cruise_end_d
decel_up_d = move_d
elif reversexy_d < accel_d * movexy_r:
accel_up_d = reversexy_d * move_d * inv_movexy_d
accel_down_d = accel_d
cruise_down_d = cruise_end_d
decel_down_d = move_d
elif reversexy_d < cruise_end_d * movexy_r:
accel_up_d = accel_d
cruise_up_d = reversexy_d * move_d * inv_movexy_d
cruise_down_d = cruise_end_d
decel_down_d = move_d
else:
accel_up_d = accel_d
cruise_up_d = cruise_end_d
decel_up_d = reversexy_d * move_d * inv_movexy_d
decel_down_d = move_d
# Generate steps
mcu_stepper = self.steppers[i].mcu_stepper
mcu_time = mcu_stepper.print_to_mcu_time(move_time)
step_pos = mcu_stepper.commanded_position
step_dist = self.steppers[i].step_dist
height = step_pos*step_dist - origz
if accel_up_d > 0.:
count = mcu_stepper.step_delta_accel(
mcu_time - accel_time_offset, accel_up_d,
accel_offset, accel_multiplier, step_dist,
height, closestxy_d, closest_height2, movez_r)
height += count * step_dist
if cruise_up_d > 0.:
count = mcu_stepper.step_delta_const(
mcu_time + accel_t, cruise_up_d,
-accel_d, inv_cruise_v, step_dist,
height, closestxy_d, closest_height2, movez_r)
height += count * step_dist
if decel_up_d > 0.:
count = mcu_stepper.step_delta_accel(
mcu_time + decel_time_offset, decel_up_d,
-decel_offset, -accel_multiplier, step_dist,
height, closestxy_d, closest_height2, movez_r)
height += count * step_dist
if accel_down_d > 0.:
count = mcu_stepper.step_delta_accel(
mcu_time - accel_time_offset, accel_down_d,
accel_offset, accel_multiplier, -step_dist,
height, closestxy_d, closest_height2, movez_r)
height += count * step_dist
if cruise_down_d > 0.:
count = mcu_stepper.step_delta_const(
mcu_time + accel_t, cruise_down_d,
-accel_d, inv_cruise_v, -step_dist,
height, closestxy_d, closest_height2, movez_r)
height += count * step_dist
if decel_down_d > 0.:
count = mcu_stepper.step_delta_accel(
mcu_time + decel_time_offset, decel_down_d,
-decel_offset, -accel_multiplier, -step_dist,
height, closestxy_d, closest_height2, movez_r)
######################################################################
# Matrix helper functions for 3x1 matrices
######################################################################
def matrix_cross(m1, m2):
return [m1[1] * m2[2] - m1[2] * m2[1],
m1[2] * m2[0] - m1[0] * m2[2],
m1[0] * m2[1] - m1[1] * m2[0]]
def matrix_dot(m1, m2):
return m1[0] * m2[0] + m1[1] * m2[1] + m1[2] * m2[2]
def matrix_magsq(m1):
return m1[0]**2 + m1[1]**2 + m1[2]**2
def matrix_sub(m1, m2):
return [m1[0] - m2[0], m1[1] - m2[1], m1[2] - m2[2]]
def matrix_mul(m1, s):
return [m1[0]*s, m1[1]*s, m1[2]*s]