klipper-dgus/klippy/extras/pid_calibrate.py

145 lines
5.7 KiB
Python
Raw Normal View History

# Calibration of heater PID settings
#
# Copyright (C) 2016-2018 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math, logging
from . import heaters
class PIDCalibrate:
def __init__(self, config):
self.printer = config.get_printer()
gcode = self.printer.lookup_object('gcode')
gcode.register_command('PID_CALIBRATE', self.cmd_PID_CALIBRATE,
desc=self.cmd_PID_CALIBRATE_help)
cmd_PID_CALIBRATE_help = "Run PID calibration test"
def cmd_PID_CALIBRATE(self, gcmd):
heater_name = gcmd.get('HEATER')
target = gcmd.get_float('TARGET')
write_file = gcmd.get_int('WRITE_FILE', 0)
pheaters = self.printer.lookup_object('heaters')
try:
heater = pheaters.lookup_heater(heater_name)
except self.printer.config_error as e:
raise gcmd.error(str(e))
self.printer.lookup_object('toolhead').get_last_move_time()
calibrate = ControlAutoTune(heater, target)
old_control = heater.set_control(calibrate)
try:
pheaters.set_temperature(heater, target, True)
except self.printer.command_error as e:
heater.set_control(old_control)
raise
heater.set_control(old_control)
if write_file:
calibrate.write_file('/tmp/heattest.txt')
if calibrate.check_busy(0., 0., 0.):
raise gcmd.error("pid_calibrate interrupted")
# Log and report results
Kp, Ki, Kd = calibrate.calc_final_pid()
logging.info("Autotune: final: Kp=%f Ki=%f Kd=%f", Kp, Ki, Kd)
gcmd.respond_info(
"PID parameters: pid_Kp=%.3f pid_Ki=%.3f pid_Kd=%.3f\n"
"The SAVE_CONFIG command will update the printer config file\n"
"with these parameters and restart the printer." % (Kp, Ki, Kd))
# Store results for SAVE_CONFIG
configfile = self.printer.lookup_object('configfile')
configfile.set(heater_name, 'control', 'pid')
configfile.set(heater_name, 'pid_Kp', "%.3f" % (Kp,))
configfile.set(heater_name, 'pid_Ki', "%.3f" % (Ki,))
configfile.set(heater_name, 'pid_Kd', "%.3f" % (Kd,))
TUNE_PID_DELTA = 5.0
class ControlAutoTune:
def __init__(self, heater, target):
self.heater = heater
self.heater_max_power = heater.get_max_power()
self.calibrate_temp = target
# Heating control
self.heating = False
self.peak = 0.
self.peak_time = 0.
# Peak recording
self.peaks = []
# Sample recording
self.last_pwm = 0.
self.pwm_samples = []
self.temp_samples = []
# Heater control
def set_pwm(self, read_time, value):
if value != self.last_pwm:
self.pwm_samples.append(
(read_time + self.heater.get_pwm_delay(), value))
self.last_pwm = value
self.heater.set_pwm(read_time, value)
def temperature_update(self, read_time, temp, target_temp):
self.temp_samples.append((read_time, temp))
# Check if the temperature has crossed the target and
# enable/disable the heater if so.
if self.heating and temp >= target_temp:
self.heating = False
self.check_peaks()
self.heater.alter_target(self.calibrate_temp - TUNE_PID_DELTA)
elif not self.heating and temp <= target_temp:
self.heating = True
self.check_peaks()
self.heater.alter_target(self.calibrate_temp)
# Check if this temperature is a peak and record it if so
if self.heating:
self.set_pwm(read_time, self.heater_max_power)
if temp < self.peak:
self.peak = temp
self.peak_time = read_time
else:
self.set_pwm(read_time, 0.)
if temp > self.peak:
self.peak = temp
self.peak_time = read_time
def check_busy(self, eventtime, smoothed_temp, target_temp):
if self.heating or len(self.peaks) < 12:
return True
return False
# Analysis
def check_peaks(self):
self.peaks.append((self.peak, self.peak_time))
if self.heating:
self.peak = 9999999.
else:
self.peak = -9999999.
if len(self.peaks) < 4:
return
self.calc_pid(len(self.peaks)-1)
def calc_pid(self, pos):
temp_diff = self.peaks[pos][0] - self.peaks[pos-1][0]
time_diff = self.peaks[pos][1] - self.peaks[pos-2][1]
# Use Astrom-Hagglund method to estimate Ku and Tu
amplitude = .5 * abs(temp_diff)
Ku = 4. * self.heater_max_power / (math.pi * amplitude)
Tu = time_diff
# Use Ziegler-Nichols method to generate PID parameters
Ti = 0.5 * Tu
Td = 0.125 * Tu
Kp = 0.6 * Ku * heaters.PID_PARAM_BASE
Ki = Kp / Ti
Kd = Kp * Td
logging.info("Autotune: raw=%f/%f Ku=%f Tu=%f Kp=%f Ki=%f Kd=%f",
temp_diff, self.heater_max_power, Ku, Tu, Kp, Ki, Kd)
return Kp, Ki, Kd
def calc_final_pid(self):
cycle_times = [(self.peaks[pos][1] - self.peaks[pos-2][1], pos)
for pos in range(4, len(self.peaks))]
midpoint_pos = sorted(cycle_times)[len(cycle_times)//2][1]
return self.calc_pid(midpoint_pos)
# Offline analysis helper
def write_file(self, filename):
pwm = ["pwm: %.3f %.3f" % (time, value)
for time, value in self.pwm_samples]
out = ["%.3f %.3f" % (time, temp) for time, temp in self.temp_samples]
f = open(filename, "wb")
f.write('\n'.join(pwm + out))
f.close()
def load_config(config):
return PIDCalibrate(config)