klipper-dgus/klippy/mcu.py

536 lines
22 KiB
Python
Raw Normal View History

# Multi-processor safe interface to micro-controller
#
# Copyright (C) 2016 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import sys, zlib, logging, time, math
import serialhdl, pins, chelper
def parse_pin_extras(pin, can_pullup=False):
pullup = invert = 0
if can_pullup and pin.startswith('^'):
pullup = invert = 1
pin = pin[1:].strip()
if pin.startswith('!'):
invert = invert ^ 1
pin = pin[1:].strip()
return pin, pullup, invert
class MCU_stepper:
def __init__(self, mcu, step_pin, dir_pin, min_stop_interval, max_error):
self._mcu = mcu
self._oid = mcu.create_oid()
step_pin, pullup, invert_step = parse_pin_extras(step_pin)
dir_pin, pullup, self._invert_dir = parse_pin_extras(dir_pin)
self._sdir = -1
self._last_move_clock = -2**29
self._mcu_freq = mcu.get_mcu_freq()
min_stop_interval = int(min_stop_interval * self._mcu_freq)
max_error = int(max_error * self._mcu_freq)
mcu.add_config_cmd(
"config_stepper oid=%d step_pin=%s dir_pin=%s"
" min_stop_interval=%d invert_step=%d" % (
self._oid, step_pin, dir_pin, min_stop_interval, invert_step))
mcu.register_stepper(self)
self._step_cmd = mcu.lookup_command(
"queue_step oid=%c interval=%u count=%hu add=%hi")
self._dir_cmd = mcu.lookup_command(
"set_next_step_dir oid=%c dir=%c")
self._reset_cmd = mcu.lookup_command(
"reset_step_clock oid=%c clock=%u")
ffi_main, self.ffi_lib = chelper.get_ffi()
self._stepqueue = self.ffi_lib.stepcompress_alloc(
max_error, self._step_cmd.msgid, self._oid)
self.print_to_mcu_time = mcu.print_to_mcu_time
def get_oid(self):
return self._oid
def get_invert_dir(self):
return self._invert_dir
def note_stepper_stop(self):
self._sdir = -1
self._last_move_clock = -2**29
def _reset_step_clock(self, clock):
self.ffi_lib.stepcompress_reset(self._stepqueue, clock)
data = (self._reset_cmd.msgid, self._oid, clock & 0xffffffff)
self.ffi_lib.stepcompress_queue_msg(self._stepqueue, data, len(data))
def set_next_step_dir(self, mcu_time, sdir):
clock = int(mcu_time * self._mcu_freq)
if clock - self._last_move_clock >= 2**29:
self._reset_step_clock(clock)
self._last_move_clock = clock
if self._sdir == sdir:
return
self._sdir = sdir
data = (self._dir_cmd.msgid, self._oid, sdir ^ self._invert_dir)
self.ffi_lib.stepcompress_queue_msg(self._stepqueue, data, len(data))
def step(self, mcu_time):
clock = mcu_time * self._mcu_freq
self.ffi_lib.stepcompress_push(self._stepqueue, clock)
def step_sqrt(self, mcu_time, steps, step_offset, sqrt_offset, factor):
clock = mcu_time * self._mcu_freq
mcu_freq2 = self._mcu_freq**2
return self.ffi_lib.stepcompress_push_sqrt(
self._stepqueue, steps, step_offset, clock
, sqrt_offset * mcu_freq2, factor * mcu_freq2)
def step_factor(self, mcu_time, steps, step_offset, factor):
clock = mcu_time * self._mcu_freq
return self.ffi_lib.stepcompress_push_factor(
self._stepqueue, steps, step_offset, clock, factor * self._mcu_freq)
def get_errors(self):
return self.ffi_lib.stepcompress_get_errors(self._stepqueue)
class MCU_endstop:
RETRY_QUERY = 1.000
def __init__(self, mcu, pin, stepper):
self._mcu = mcu
self._oid = mcu.create_oid()
self._stepper = stepper
stepper_oid = stepper.get_oid()
pin, pullup, self._invert = parse_pin_extras(pin, can_pullup=True)
self._cmd_queue = mcu.alloc_command_queue()
mcu.add_config_cmd(
"config_end_stop oid=%d pin=%s pull_up=%d stepper_oid=%d" % (
self._oid, pin, pullup, stepper_oid))
self._home_cmd = mcu.lookup_command(
"end_stop_home oid=%c clock=%u rest_ticks=%u pin_value=%c")
mcu.register_msg(self._handle_end_stop_state, "end_stop_state"
, self._oid)
self._query_cmd = mcu.lookup_command("end_stop_query oid=%c")
self._homing = False
self._last_position = 0
self._next_query_clock = 0
self._mcu_freq = mcu.get_mcu_freq()
self._retry_query_ticks = int(self._mcu_freq * self.RETRY_QUERY)
self.print_to_mcu_time = mcu.print_to_mcu_time
def home(self, mcu_time, rest_time):
clock = int(mcu_time * self._mcu_freq)
rest_ticks = int(rest_time * self._mcu_freq)
self._homing = True
self._next_query_clock = clock + self._retry_query_ticks
msg = self._home_cmd.encode(
self._oid, clock, rest_ticks, 1 ^ self._invert)
self._mcu.send(msg, reqclock=clock, cq=self._cmd_queue)
def home_finalize(self):
# XXX - this flushes the serial port of messages ready to be
# sent, but doesn't flush messages if they had an unmet minclock
self._mcu.serial.send_flush()
self._stepper.note_stepper_stop()
def _handle_end_stop_state(self, params):
logging.debug("end_stop_state %s" % (params,))
self._last_position = params['pos']
self._homing = params['homing'] != 0
def is_homing(self):
if not self._homing:
return self._homing
if self._mcu.output_file_mode:
return False
last_clock = self._mcu.get_last_clock()
if last_clock >= self._next_query_clock:
self._next_query_clock = last_clock + self._retry_query_ticks
msg = self._query_cmd.encode(self._oid)
self._mcu.send(msg, cq=self._cmd_queue)
return self._homing
def get_last_position(self):
if self._stepper.get_invert_dir():
return -self._last_position
return self._last_position
class MCU_digital_out:
def __init__(self, mcu, pin, max_duration):
self._mcu = mcu
self._oid = mcu.create_oid()
pin, pullup, self._invert = parse_pin_extras(pin)
self._last_clock = 0
self._last_value = None
self._mcu_freq = mcu.get_mcu_freq()
self._cmd_queue = mcu.alloc_command_queue()
mcu.add_config_cmd(
"config_digital_out oid=%d pin=%s default_value=%d"
" max_duration=%d" % (self._oid, pin, self._invert, max_duration))
self._set_cmd = mcu.lookup_command(
"schedule_digital_out oid=%c clock=%u value=%c")
self.print_to_mcu_time = mcu.print_to_mcu_time
def set_digital(self, mcu_time, value):
clock = int(mcu_time * self._mcu_freq)
msg = self._set_cmd.encode(self._oid, clock, value ^ self._invert)
self._mcu.send(msg, minclock=self._last_clock, reqclock=clock
, cq=self._cmd_queue)
self._last_clock = clock
self._last_value = value
def get_last_setting(self):
return self._last_value
def set_pwm(self, mcu_time, value):
dval = 0
if value > 127:
dval = 1
self.set_digital(mcu_time, dval)
class MCU_pwm:
def __init__(self, mcu, pin, cycle_ticks, max_duration, hard_pwm=True):
self._mcu = mcu
self._oid = mcu.create_oid()
self._last_clock = 0
self._mcu_freq = mcu.get_mcu_freq()
self._cmd_queue = mcu.alloc_command_queue()
if hard_pwm:
mcu.add_config_cmd(
"config_pwm_out oid=%d pin=%s cycle_ticks=%d default_value=0"
" max_duration=%d" % (self._oid, pin, cycle_ticks, max_duration))
self._set_cmd = mcu.lookup_command(
"schedule_pwm_out oid=%c clock=%u value=%c")
else:
mcu.add_config_cmd(
"config_soft_pwm_out oid=%d pin=%s cycle_ticks=%d"
" default_value=0 max_duration=%d" % (
self._oid, pin, cycle_ticks, max_duration))
self._set_cmd = mcu.lookup_command(
"schedule_soft_pwm_out oid=%c clock=%u value=%c")
self.print_to_mcu_time = mcu.print_to_mcu_time
def set_pwm(self, mcu_time, value):
clock = int(mcu_time * self._mcu_freq)
msg = self._set_cmd.encode(self._oid, clock, value)
self._mcu.send(msg, minclock=self._last_clock, reqclock=clock
, cq=self._cmd_queue)
self._last_clock = clock
class MCU_adc:
ADC_MAX = 1024 # 10bit adc
def __init__(self, mcu, pin):
self._mcu = mcu
self._oid = mcu.create_oid()
self._min_sample = 0
self._max_sample = 0xffff
self._sample_ticks = 0
self._sample_count = 1
self._report_clock = 0
self._callback = None
self._inv_max_adc = 0.
self._mcu_freq = mcu.get_mcu_freq()
self._cmd_queue = mcu.alloc_command_queue()
mcu.add_config_cmd("config_analog_in oid=%d pin=%s" % (self._oid, pin))
mcu.register_msg(self._handle_analog_in_state, "analog_in_state"
, self._oid)
self._query_cmd = mcu.lookup_command(
"query_analog_in oid=%c clock=%u sample_ticks=%u sample_count=%c"
" rest_ticks=%u min_value=%hu max_value=%hu")
def set_minmax(self, sample_time, sample_count, minval=None, maxval=None):
self._sample_ticks = int(sample_time * self._mcu_freq)
self._sample_count = sample_count
if minval is None:
minval = 0
if maxval is None:
maxval = 0xffff
max_adc = sample_count * self.ADC_MAX
self._min_sample = int(minval * max_adc)
self._max_sample = min(0xffff, int(math.ceil(maxval * max_adc)))
self._inv_max_adc = 1.0 / max_adc
def query_analog_in(self, report_time):
self._report_clock = int(report_time * self._mcu_freq)
cur_clock = self._mcu.get_last_clock()
clock = cur_clock + int(self._mcu_freq * (1.0 + self._oid * 0.01)) # XXX
msg = self._query_cmd.encode(
self._oid, clock, self._sample_ticks, self._sample_count
, self._report_clock, self._min_sample, self._max_sample)
self._mcu.send(msg, reqclock=clock, cq=self._cmd_queue)
def _handle_analog_in_state(self, params):
last_value = params['value'] * self._inv_max_adc
next_clock = self._mcu.serial.translate_clock(params['next_clock'])
last_read_time = (next_clock - self._report_clock) / self._mcu_freq
if self._callback is not None:
self._callback(last_read_time, last_value)
def set_adc_callback(self, cb):
self._callback = cb
class MCU:
def __init__(self, printer, config):
self._printer = printer
self._config = config
# Serial port
baud = config.getint('baud', 115200)
serialport = config.get('serial', '/dev/ttyS0')
self.serial = serialhdl.SerialReader(printer.reactor, serialport, baud)
self.is_shutdown = False
self.output_file_mode = False
# Config building
self._emergency_stop_cmd = None
self._num_oids = 0
self._config_cmds = []
self._config_crc = None
# Move command queuing
ffi_main, self.ffi_lib = chelper.get_ffi()
self._steppers = []
self._steppersync = None
# Print time to clock epoch calculations
self._print_start_time = 0.
self._mcu_freq = 0.
# Stats
self._mcu_tick_avg = 0.
self._mcu_tick_stddev = 0.
def handle_mcu_stats(self, params):
logging.debug("mcu stats: %s" % (params,))
count = params['count']
tick_sum = params['sum']
c = 1.0 / (count * self._mcu_freq)
self._mcu_tick_avg = tick_sum * c
tick_sumsq = params['sumsq']
tick_sumavgsq = ((tick_sum // (256*count)) * count)**2
self._mcu_tick_stddev = c * 256. * math.sqrt(
count * tick_sumsq - tick_sumavgsq)
def handle_shutdown(self, params):
if self.is_shutdown:
return
self.is_shutdown = True
logging.info("%s: %s" % (params['#name'], params['#msg']))
self.serial.dump_debug()
self._printer.shutdown()
# Connection phase
def _init_steppersync(self, count):
stepqueues = tuple(s._stepqueue for s in self._steppers)
self._steppersync = self.ffi_lib.steppersync_alloc(
self.serial.serialqueue, stepqueues, len(stepqueues), count)
def connect(self):
def handle_serial_state(params):
if params['#state'] == 'connected':
self._printer.reactor.end()
self.serial.register_callback(handle_serial_state, '#state')
self.serial.connect()
self._printer.reactor.run()
self.serial.unregister_callback('#state')
logging.info("serial connected")
self._mcu_freq = float(self.serial.msgparser.config['CLOCK_FREQ'])
self.register_msg(self.handle_shutdown, 'shutdown')
self.register_msg(self.handle_shutdown, 'is_shutdown')
self.register_msg(self.handle_mcu_stats, 'stats')
def connect_file(self, debugoutput, dictionary, pace=False):
self.output_file_mode = True
self.serial.connect_file(debugoutput, dictionary)
self._mcu_freq = float(self.serial.msgparser.config['CLOCK_FREQ'])
def dummy_send_config():
for c in self._config_cmds:
self.send(self.create_command(c))
self._init_steppersync(500)
self._send_config = dummy_send_config
if not pace:
def dummy_set_print_start_time(eventtime):
pass
def dummy_get_print_buffer_time(eventtime, last_move_end):
return 0.250
self.set_print_start_time = dummy_set_print_start_time
self.get_print_buffer_time = dummy_get_print_buffer_time
def disconnect(self):
self.serial.disconnect()
def stats(self, eventtime):
stats = self.serial.stats(eventtime)
stats += " mcu_task_avg=%.06f mcu_task_stddev=%.06f" % (
self._mcu_tick_avg, self._mcu_tick_stddev)
err = 0
for s in self._steppers:
err += s.get_errors()
if err:
stats += " step_errors=%d" % (err,)
return stats
def force_shutdown(self):
self.send(self._emergency_stop_cmd.encode())
# Configuration phase
def _add_custom(self):
data = self._config.get('custom', '')
for line in data.split('\n'):
line = line.strip()
cpos = line.find('#')
if cpos >= 0:
line = line[:cpos].strip()
if not line:
continue
self.add_config_cmd(line)
def build_config(self):
self._emergency_stop_cmd = self.lookup_command("emergency_stop")
# Build config commands
self._add_custom()
self._config_cmds.insert(0, "allocate_oids count=%d" % (
self._num_oids,))
# Resolve pin names
mcu = self.serial.msgparser.config['MCU']
pin_map = self._config.get('pin_map')
if pin_map is None:
pnames = pins.mcu_to_pins(mcu)
else:
pnames = pins.map_pins(pin_map, mcu)
self._config_cmds = [pins.update_command(c, pnames)
for c in self._config_cmds]
# Calculate config CRC
self._config_crc = zlib.crc32('\n'.join(self._config_cmds)) & 0xffffffff
self.add_config_cmd("finalize_config crc=%d" % (self._config_crc,))
self._send_config()
def _send_config(self):
msg = self.create_command("get_config")
config_params = {}
sent_config = False
def handle_get_config(params):
config_params.update(params)
done = not sent_config or params['is_config']
if done:
self._printer.reactor.end()
return done
while 1:
self.serial.send_with_response(msg, handle_get_config, 'config')
self._printer.reactor.run()
if not config_params['is_config']:
# Send config commands
for c in self._config_cmds:
self.send(self.create_command(c))
config_params.clear()
sent_config = True
continue
if self._config_crc != config_params['crc']:
logging.error("Printer CRC does not match config")
sys.exit(1)
break
logging.info("Configured")
self._init_steppersync(config_params['move_count'])
# Config creation helpers
def create_oid(self):
oid = self._num_oids
self._num_oids += 1
return oid
def add_config_cmd(self, cmd):
self._config_cmds.append(cmd)
def register_msg(self, cb, msg, oid=None):
self.serial.register_callback(cb, msg, oid)
def register_stepper(self, stepper):
self._steppers.append(stepper)
def alloc_command_queue(self):
return self.serial.alloc_command_queue()
def lookup_command(self, msgformat):
return self.serial.msgparser.lookup_command(msgformat)
def create_command(self, msg):
return self.serial.msgparser.create_command(msg)
# Wrappers for mcu object creation
def create_stepper(self, step_pin, dir_pin, min_stop_interval, max_error):
return MCU_stepper(self, step_pin, dir_pin, min_stop_interval, max_error)
def create_endstop(self, pin, stepper):
return MCU_endstop(self, pin, stepper)
def create_digital_out(self, pin, max_duration=2.):
max_duration = int(max_duration * self._mcu_freq)
return MCU_digital_out(self, pin, max_duration)
def create_pwm(self, pin, hard_cycle_ticks, max_duration=2.):
max_duration = int(max_duration * self._mcu_freq)
if hard_cycle_ticks:
return MCU_pwm(self, pin, hard_cycle_ticks, max_duration)
if hard_cycle_ticks < 0:
return MCU_digital_out(self, pin, max_duration)
cycle_ticks = int(self._mcu_freq / 10.)
return MCU_pwm(self, pin, cycle_ticks, max_duration, hard_pwm=False)
def create_adc(self, pin):
return MCU_adc(self, pin)
# Clock syncing
def set_print_start_time(self, eventtime):
est_mcu_time = self.serial.get_clock(eventtime) / self._mcu_freq
self._print_start_time = est_mcu_time
def get_print_buffer_time(self, eventtime, print_time):
mcu_time = print_time + self._print_start_time
est_mcu_time = self.serial.get_clock(eventtime) / self._mcu_freq
return mcu_time - est_mcu_time
def print_to_mcu_time(self, print_time):
return print_time + self._print_start_time
def get_mcu_freq(self):
return self._mcu_freq
def get_last_clock(self):
return self.serial.get_last_clock()
# Move command queuing
def send(self, cmd, minclock=0, reqclock=0, cq=None):
self.serial.send(cmd, minclock, reqclock, cq=cq)
def flush_moves(self, print_time):
mcu_time = print_time + self._print_start_time
clock = int(mcu_time * self._mcu_freq)
self.ffi_lib.steppersync_flush(self._steppersync, clock)
######################################################################
# MCU Unit testing
######################################################################
class Dummy_MCU_stepper:
def __init__(self, mcu, stepid):
self._mcu = mcu
self._stepid = stepid
self._sdir = None
def queue_step(self, interval, count, add, clock):
dirstr = countstr = addstr = ""
if self._sdir is not None:
dirstr = "D%d" % (self._sdir+1,)
self._sdir = None
if count != 1:
countstr = "C%d" % (count,)
if add:
addstr = "A%d" % (add,)
self._mcu.outfile.write("G5S%d%s%s%sT%d\n" % (
self._stepid, dirstr, countstr, addstr, interval))
def set_next_step_dir(self, dir):
self._sdir = dir
def _reset_step_clock(self, clock):
self._mcu.outfile.write("G6S%dT%d\n" % (self._stepid, clock))
def print_to_mcu_time(self, print_time):
return self._mcu.print_to_mcu_time(print_time)
class Dummy_MCU_obj:
def __init__(self, mcu):
self._mcu = mcu
def home(self, clock, rest_ticks):
pass
def is_homing(self):
return False
def home_finalize(self):
pass
def set_pwm(self, mcu_time, value):
pass
def set_minmax(self, sample_time, sample_count, minval=None, maxval=None):
pass
def query_analog_in(self, report_time):
pass
def set_adc_callback(self, cb):
pass
def print_to_mcu_time(self, print_time):
return self._mcu.print_to_mcu_time(print_time)
class DummyMCU:
def __init__(self, outfile):
self.outfile = outfile
self._stepid = -1
self._print_start_time = 0.
self._mcu_freq = 16000000.
logging.debug('Translated by klippy')
def connect(self):
pass
def disconnect(self):
pass
def stats(self, eventtime):
return ""
def force_shutdown(self):
pass
def build_config(self):
pass
def create_stepper(self, step_pin, dir_pin, min_stop_interval, max_error):
self._stepid += 1
return Dummy_MCU_stepper(self, self._stepid)
def create_endstop(self, pin, stepper):
return Dummy_MCU_obj(self)
def create_digital_out(self, pin, max_duration=2.):
return None
def create_pwm(self, pin, hard_cycle_ticks, max_duration=2.):
return Dummy_MCU_obj(self)
def create_adc(self, pin):
return Dummy_MCU_obj(self)
def set_print_start_time(self, eventtime):
pass
def get_print_buffer_time(self, eventtime, last_move_end):
return 0.250
def print_to_mcu_time(self, print_time):
return print_time + self._print_start_time
def get_mcu_freq(self):
return self._mcu_freq
def flush_moves(self, print_time):
pass