klipper-dgus/klippy/kinematics/polar.py

139 lines
6.0 KiB
Python
Raw Normal View History

# Code for handling the kinematics of polar robots
#
# Copyright (C) 2018-2019 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging, math
import stepper, homing
class PolarKinematics:
def __init__(self, toolhead, config):
# Setup axis steppers
stepper_bed = stepper.PrinterStepper(config.getsection('stepper_bed'))
rail_arm = stepper.PrinterRail(config.getsection('stepper_arm'))
rail_z = stepper.LookupMultiRail(config.getsection('stepper_z'))
stepper_bed.setup_itersolve('polar_stepper_alloc', 'a')
rail_arm.setup_itersolve('polar_stepper_alloc', 'r')
rail_z.setup_itersolve('cartesian_stepper_alloc', 'z')
self.rails = [rail_arm, rail_z]
self.steppers = [stepper_bed] + [ s for r in self.rails
for s in r.get_steppers() ]
# Setup boundary checks
max_velocity, max_accel = toolhead.get_max_velocity()
self.max_z_velocity = config.getfloat(
'max_z_velocity', max_velocity, above=0., maxval=max_velocity)
self.max_z_accel = config.getfloat(
'max_z_accel', max_accel, above=0., maxval=max_accel)
self.need_motor_enable = True
self.limit_z = [(1.0, -1.0)]
self.limit_xy2 = -1.
# Setup stepper max halt velocity
max_halt_velocity = toolhead.get_max_axis_halt()
stepper_bed.set_max_jerk(max_halt_velocity, max_accel)
rail_arm.set_max_jerk(max_halt_velocity, max_accel)
rail_z.set_max_jerk(max_halt_velocity, max_accel)
def get_steppers(self, flags=""):
if flags == "Z":
return self.rails[1].get_steppers()
return list(self.steppers)
def calc_position(self):
bed_angle = self.steppers[0].get_commanded_position()
arm_pos = self.rails[0].get_commanded_position()
z_pos = self.rails[1].get_commanded_position()
return [math.cos(bed_angle) * arm_pos, math.sin(bed_angle) * arm_pos,
z_pos]
def set_position(self, newpos, homing_axes):
for s in self.steppers:
s.set_position(newpos)
if 2 in homing_axes:
self.limit_z = self.rails[1].get_range()
if 0 in homing_axes and 1 in homing_axes:
self.limit_xy2 = self.rails[0].get_range()[1]**2
def _home_axis(self, homing_state, axis, rail):
# Determine movement
position_min, position_max = rail.get_range()
hi = rail.get_homing_info()
homepos = [None, None, None, None]
homepos[axis] = hi.position_endstop
if axis == 0:
homepos[1] = 0.
forcepos = list(homepos)
if hi.positive_dir:
forcepos[axis] -= hi.position_endstop - position_min
else:
forcepos[axis] += position_max - hi.position_endstop
# Perform homing
homing_state.home_rails([rail], forcepos, homepos)
def home(self, homing_state):
# Always home XY together
homing_axes = homing_state.get_axes()
home_xy = 0 in homing_axes or 1 in homing_axes
home_z = 2 in homing_axes
updated_axes = []
if home_xy:
updated_axes = [0, 1]
if home_z:
updated_axes.append(2)
homing_state.set_axes(updated_axes)
# Do actual homing
if home_xy:
self._home_axis(homing_state, 0, self.rails[0])
if home_z:
self._home_axis(homing_state, 2, self.rails[1])
def motor_off(self, print_time):
self.limit_z = [(1.0, -1.0)]
self.limit_xy2 = -1.
for s in self.steppers:
s.motor_enable(print_time, 0)
self.need_motor_enable = True
def _check_motor_enable(self, print_time, move):
if move.axes_d[0] or move.axes_d[1]:
self.steppers[0].motor_enable(print_time, 1)
self.rails[0].motor_enable(print_time, 1)
if move.axes_d[2]:
self.rails[1].motor_enable(print_time, 1)
need_motor_enable = not self.steppers[0].is_motor_enabled()
for rail in self.rails:
need_motor_enable |= not rail.is_motor_enabled()
self.need_motor_enable = need_motor_enable
def check_move(self, move):
end_pos = move.end_pos
xy2 = end_pos[0]**2 + end_pos[1]**2
if xy2 > self.limit_xy2:
if self.limit_xy2 < 0.:
raise homing.EndstopMoveError(end_pos, "Must home axis first")
raise homing.EndstopMoveError(end_pos)
if move.axes_d[2]:
if end_pos[2] < self.limit_z[0] or end_pos[2] > self.limit_z[1]:
if self.limit_z[0] > self.limit_z[1]:
raise homing.EndstopMoveError(
end_pos, "Must home axis first")
raise homing.EndstopMoveError(end_pos)
# Move with Z - update velocity and accel for slower Z axis
z_ratio = move.move_d / abs(move.axes_d[2])
move.limit_speed(
self.max_z_velocity * z_ratio, self.max_z_accel * z_ratio)
def move(self, print_time, move):
if self.need_motor_enable:
self._check_motor_enable(print_time, move)
axes_d = move.axes_d
cmove = move.cmove
if axes_d[0] or axes_d[1]:
self.rails[0].step_itersolve(cmove)
stepper_bed = self.steppers[0]
stepper_bed.step_itersolve(cmove)
# Normalize the stepper_bed angle
angle = stepper_bed.get_commanded_position()
if angle < -math.pi:
stepper_bed.set_commanded_position(angle + 2. * math.pi)
elif angle > math.pi:
stepper_bed.set_commanded_position(angle - 2. * math.pi)
if axes_d[2]:
self.rails[1].step_itersolve(cmove)
def get_status(self):
return {'homed_axes': (("XY" if self.limit_xy2 >= 0. else "") +
("Z" if self.limit_z[0] <= self.limit_z[1] else ""))}
def load_kinematics(toolhead, config):
return PolarKinematics(toolhead, config)