klipper-dgus/klippy/kinematics/delta.py

198 lines
9.3 KiB
Python
Raw Normal View History

# Code for handling the kinematics of linear delta robots
#
# Copyright (C) 2016-2018 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math, logging
import stepper, homing, mathutil
# Slow moves once the ratio of tower to XY movement exceeds SLOW_RATIO
SLOW_RATIO = 3.
class DeltaKinematics:
def __init__(self, toolhead, config):
# Setup tower rails
stepper_configs = [config.getsection('stepper_' + n)
for n in ['a', 'b', 'c']]
rail_a = stepper.PrinterRail(
stepper_configs[0], need_position_minmax = False)
a_endstop = rail_a.get_homing_info().position_endstop
rail_b = stepper.PrinterRail(
stepper_configs[1], need_position_minmax = False,
default_position_endstop=a_endstop)
rail_c = stepper.PrinterRail(
stepper_configs[2], need_position_minmax = False,
default_position_endstop=a_endstop)
self.rails = [rail_a, rail_b, rail_c]
# Read radius and arm lengths
self.radius = radius = config.getfloat('delta_radius', above=0.)
arm_length_a = stepper_configs[0].getfloat('arm_length', above=radius)
self.arm_lengths = arm_lengths = [
sconfig.getfloat('arm_length', arm_length_a, above=radius)
for sconfig in stepper_configs]
self.arm2 = [arm**2 for arm in arm_lengths]
self.endstops = [(rail.get_homing_info().position_endstop
+ math.sqrt(arm2 - radius**2))
for rail, arm2 in zip(self.rails, self.arm2)]
# Setup boundary checks
self.need_motor_enable = self.need_home = True
self.limit_xy2 = -1.
self.max_z = min([rail.get_homing_info().position_endstop
for rail in self.rails])
self.min_z = config.getfloat('minimum_z_position', 0, maxval=self.max_z)
self.limit_z = min([ep - arm
for ep, arm in zip(self.endstops, arm_lengths)])
logging.info(
"Delta max build height %.2fmm (radius tapered above %.2fmm)" % (
self.max_z, self.limit_z))
# Setup stepper max halt velocity
self.max_velocity, self.max_accel = toolhead.get_max_velocity()
self.max_z_velocity = config.getfloat(
'max_z_velocity', self.max_velocity,
above=0., maxval=self.max_velocity)
max_halt_velocity = toolhead.get_max_axis_halt()
for rail in self.rails:
rail.set_max_jerk(max_halt_velocity, self.max_accel)
# Determine tower locations in cartesian space
self.angles = [sconfig.getfloat('angle', angle)
for sconfig, angle in zip(stepper_configs,
[210., 330., 90.])]
self.towers = [(math.cos(math.radians(angle)) * radius,
math.sin(math.radians(angle)) * radius)
for angle in self.angles]
for r, a, t in zip(self.rails, self.arm2, self.towers):
r.setup_itersolve('delta_stepper_alloc', a, t[0], t[1])
# Find the point where an XY move could result in excessive
# tower movement
half_min_step_dist = min([r.get_steppers()[0].get_step_dist()
for r in self.rails]) * .5
min_arm_length = min(arm_lengths)
def ratio_to_dist(ratio):
return (ratio * math.sqrt(min_arm_length**2 / (ratio**2 + 1.)
- half_min_step_dist**2)
+ half_min_step_dist)
self.slow_xy2 = (ratio_to_dist(SLOW_RATIO) - radius)**2
self.very_slow_xy2 = (ratio_to_dist(2. * SLOW_RATIO) - radius)**2
self.max_xy2 = min(radius, min_arm_length - radius,
ratio_to_dist(4. * SLOW_RATIO) - radius)**2
logging.info(
"Delta max build radius %.2fmm (moves slowed past %.2fmm and %.2fmm)"
% (math.sqrt(self.max_xy2), math.sqrt(self.slow_xy2),
math.sqrt(self.very_slow_xy2)))
self.set_position([0., 0., 0.], ())
def get_rails(self, flags=""):
return list(self.rails)
def _actuator_to_cartesian(self, spos):
sphere_coords = [(t[0], t[1], sp) for t, sp in zip(self.towers, spos)]
return mathutil.trilateration(sphere_coords, self.arm2)
def calc_position(self):
spos = [rail.get_commanded_position() for rail in self.rails]
return self._actuator_to_cartesian(spos)
def set_position(self, newpos, homing_axes):
for rail in self.rails:
rail.set_position(newpos)
self.limit_xy2 = -1.
if tuple(homing_axes) == (0, 1, 2):
self.need_home = False
def home(self, homing_state):
# All axes are homed simultaneously
homing_state.set_axes([0, 1, 2])
endstops = [es for rail in self.rails for es in rail.get_endstops()]
# Initial homing - assume homing speed same for all steppers
hi = self.rails[0].get_homing_info()
homing_speed = min(hi.speed, self.max_z_velocity)
homepos = [0., 0., self.max_z, None]
coord = list(homepos)
coord[2] = -1.5 * math.sqrt(max(self.arm2)-self.max_xy2)
homing_state.home(coord, homepos, endstops, homing_speed)
# Retract
coord[2] = homepos[2] - hi.retract_dist
homing_state.retract(coord, homing_speed)
# Home again
coord[2] -= hi.retract_dist
homing_state.home(coord, homepos, endstops,
homing_speed/2.0, second_home=True)
# Set final homed position
spos = [ep + rail.get_homed_offset()
for ep, rail in zip(self.endstops, self.rails)]
homing_state.set_homed_position(self._actuator_to_cartesian(spos))
def motor_off(self, print_time):
self.limit_xy2 = -1.
for rail in self.rails:
rail.motor_enable(print_time, 0)
self.need_motor_enable = self.need_home = True
def _check_motor_enable(self, print_time):
for rail in self.rails:
rail.motor_enable(print_time, 1)
self.need_motor_enable = False
def check_move(self, move):
end_pos = move.end_pos
xy2 = end_pos[0]**2 + end_pos[1]**2
if xy2 <= self.limit_xy2 and not move.axes_d[2]:
# Normal XY move
return
if self.need_home:
raise homing.EndstopMoveError(end_pos, "Must home first")
limit_xy2 = self.max_xy2
if end_pos[2] > self.limit_z:
limit_xy2 = min(limit_xy2, (self.max_z - end_pos[2])**2)
if xy2 > limit_xy2 or end_pos[2] < self.min_z or end_pos[2] > self.max_z:
raise homing.EndstopMoveError(end_pos)
if move.axes_d[2]:
move.limit_speed(self.max_z_velocity, move.accel)
limit_xy2 = -1.
# Limit the speed/accel of this move if is is at the extreme
# end of the build envelope
extreme_xy2 = max(xy2, move.start_pos[0]**2 + move.start_pos[1]**2)
if extreme_xy2 > self.slow_xy2:
r = 0.5
if extreme_xy2 > self.very_slow_xy2:
r = 0.25
max_velocity = self.max_velocity
if move.axes_d[2]:
max_velocity = self.max_z_velocity
move.limit_speed(max_velocity * r, self.max_accel * r)
limit_xy2 = -1.
self.limit_xy2 = min(limit_xy2, self.slow_xy2)
def move(self, print_time, move):
if self.need_motor_enable:
self._check_motor_enable(print_time)
for rail in self.rails:
rail.step_itersolve(move.cmove)
# Helper functions for DELTA_CALIBRATE script
def get_stable_position(self):
steppers = [rail.get_steppers()[0] for rail in self.rails]
return [int((ep - s.get_commanded_position()) / s.get_step_dist() + .5)
for ep, s in zip(self.endstops, steppers)]
def get_calibrate_params(self):
out = { 'radius': self.radius }
for i, axis in enumerate('abc'):
rail = self.rails[i]
out['endstop_'+axis] = rail.get_homing_info().position_endstop
out['stepdist_'+axis] = rail.get_steppers()[0].get_step_dist()
out['angle_'+axis] = self.angles[i]
out['arm_'+axis] = self.arm_lengths[i]
return out
def get_positions_from_stable(self, stable_positions, params):
angle_names = ['angle_a', 'angle_b', 'angle_c']
angles = [math.radians(params[an]) for an in angle_names]
radius = params['radius']
radius2 = radius**2
towers = [(math.cos(a) * radius, math.sin(a) * radius) for a in angles]
arm2 = [params[an]**2 for an in ['arm_a', 'arm_b', 'arm_c']]
stepdist_names = ['stepdist_a', 'stepdist_b', 'stepdist_c']
stepdists = [params[sn] for sn in stepdist_names]
endstop_names = ['endstop_a', 'endstop_b', 'endstop_c']
endstops = [params[en] + math.sqrt(a2 - radius2)
for en, a2 in zip(endstop_names, arm2)]
out = []
for spos in stable_positions:
sphere_coords = [
(t[0], t[1], es - sp * sd)
for t, es, sd, sp in zip(towers, endstops, stepdists, spos) ]
out.append(mathutil.trilateration(sphere_coords, arm2))
return out
def load_kinematics(toolhead, config):
return DeltaKinematics(toolhead, config)