klipper-dgus/klippy/chelper/itersolve.c

251 lines
8.7 KiB
C
Raw Normal View History

// Iterative solver for kinematic moves
//
// Copyright (C) 2018-2019 Kevin O'Connor <kevin@koconnor.net>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
#include <math.h> // fabs
#include <stddef.h> // offsetof
#include <string.h> // memset
#include "compiler.h" // __visible
#include "itersolve.h" // itersolve_generate_steps
#include "pyhelper.h" // errorf
#include "stepcompress.h" // queue_append_start
#include "trapq.h" // struct move
struct timepos {
double time, position;
};
// Find step using "false position" method
static struct timepos
itersolve_find_step(struct stepper_kinematics *sk, struct move *m
, struct timepos low, struct timepos high
, double target)
{
sk_calc_callback calc_position_cb = sk->calc_position_cb;
struct timepos best_guess = high;
low.position -= target;
high.position -= target;
if (!high.position)
// The high range was a perfect guess for the next step
return best_guess;
int high_sign = signbit(high.position);
if (high_sign == signbit(low.position))
// The target is not in the low/high range - return low range
return (struct timepos){ low.time, target };
for (;;) {
double guess_time = ((low.time*high.position - high.time*low.position)
/ (high.position - low.position));
if (fabs(guess_time - best_guess.time) <= .000000001)
break;
best_guess.time = guess_time;
best_guess.position = calc_position_cb(sk, m, guess_time);
double guess_position = best_guess.position - target;
int guess_sign = signbit(guess_position);
if (guess_sign == high_sign) {
high.time = guess_time;
high.position = guess_position;
} else {
low.time = guess_time;
low.position = guess_position;
}
}
return best_guess;
}
// Generate step times for a portion of a move
static int32_t
itersolve_gen_steps_range(struct stepper_kinematics *sk, struct move *m
, double move_start, double move_end)
{
struct stepcompress *sc = sk->sc;
sk_calc_callback calc_position_cb = sk->calc_position_cb;
double half_step = .5 * sk->step_dist;
double mcu_freq = stepcompress_get_mcu_freq(sc);
double start = move_start - m->print_time, end = move_end - m->print_time;
struct timepos last = { start, sk->commanded_pos }, low = last, high = last;
double seek_time_delta = 0.000100;
int sdir = stepcompress_get_step_dir(sc);
struct queue_append qa = queue_append_start(sc, m->print_time, .5);
for (;;) {
// Determine if next step is in forward or reverse direction
double dist = high.position - last.position;
if (fabs(dist) < half_step) {
seek_new_high_range:
if (high.time >= end)
// At end of move
break;
// Need to increase next step search range
low = high;
high.time = last.time + seek_time_delta;
seek_time_delta += seek_time_delta;
if (high.time > end)
high.time = end;
high.position = calc_position_cb(sk, m, high.time);
continue;
}
int next_sdir = dist > 0.;
if (unlikely(next_sdir != sdir)) {
// Direction change
if (fabs(dist) < half_step + .000000001)
// Only change direction if going past midway point
goto seek_new_high_range;
if (last.time >= low.time) {
// Must seek new low range to avoid re-finding previous time
if (high.time < last.time + .000000001)
goto seek_new_high_range;
high.time = (last.time + high.time) * .5;
high.position = calc_position_cb(sk, m, high.time);
continue;
}
int ret = queue_append_set_next_step_dir(&qa, next_sdir);
if (ret)
return ret;
sdir = next_sdir;
}
// Find step
double target = last.position + (sdir ? half_step : -half_step);
struct timepos next = itersolve_find_step(sk, m, low, high, target);
// Add step at given time
int ret = queue_append(&qa, next.time * mcu_freq);
if (ret)
return ret;
seek_time_delta = next.time - last.time;
if (seek_time_delta < .000000001)
seek_time_delta = .000000001;
last.position = target + (sdir ? half_step : -half_step);
last.time = next.time;
low = next;
if (last.time >= high.time)
// The high range is no longer valid - recalculate it
goto seek_new_high_range;
}
queue_append_finish(qa);
sk->commanded_pos = last.position;
if (sk->post_cb)
sk->post_cb(sk);
return 0;
}
// Check if a move is likely to cause movement on a stepper
static inline int
check_active(struct stepper_kinematics *sk, struct move *m)
{
int af = sk->active_flags;
return ((af & AF_X && m->axes_r.x != 0.)
|| (af & AF_Y && m->axes_r.y != 0.)
|| (af & AF_Z && m->axes_r.z != 0.));
}
// Generate step times for a range of moves on the trapq
int32_t __visible
itersolve_generate_steps(struct stepper_kinematics *sk, double flush_time)
{
double last_flush_time = sk->last_flush_time;
sk->last_flush_time = flush_time;
if (!sk->tq)
return 0;
trapq_check_sentinels(sk->tq);
struct move *m = list_first_entry(&sk->tq->moves, struct move, node);
while (last_flush_time >= m->print_time + m->move_t)
m = list_next_entry(m, node);
double force_steps_time = sk->last_move_time + sk->scan_past;
for (;;) {
if (last_flush_time >= flush_time)
return 0;
double start = m->print_time, end = start + m->move_t;
if (start < last_flush_time)
start = last_flush_time;
if (end > flush_time)
end = flush_time;
if (check_active(sk, m)) {
if (sk->scan_future && start > last_flush_time) {
// Must generate steps leading up to stepper activity
force_steps_time = start;
if (last_flush_time < start - sk->scan_future)
last_flush_time = start - sk->scan_future;
while (m->print_time > last_flush_time)
m = list_prev_entry(m, node);
continue;
}
// Generate steps for this move
int32_t ret = itersolve_gen_steps_range(sk, m, start, end);
if (ret)
return ret;
sk->last_move_time = last_flush_time = end;
force_steps_time = end + sk->scan_past;
} else if (start < force_steps_time) {
// Must generates steps just past stepper activity
if (end > force_steps_time)
end = force_steps_time;
int32_t ret = itersolve_gen_steps_range(sk, m, start, end);
if (ret)
return ret;
last_flush_time = end;
}
if (flush_time + sk->scan_future <= m->print_time + m->move_t)
return 0;
m = list_next_entry(m, node);
}
}
// Check if the given stepper is likely to be active in the given time range
double __visible
itersolve_check_active(struct stepper_kinematics *sk, double flush_time)
{
if (!sk->tq)
return 0.;
trapq_check_sentinels(sk->tq);
struct move *m = list_first_entry(&sk->tq->moves, struct move, node);
while (sk->last_flush_time >= m->print_time + m->move_t)
m = list_next_entry(m, node);
for (;;) {
if (check_active(sk, m))
return m->print_time;
if (flush_time <= m->print_time + m->move_t)
return 0.;
m = list_next_entry(m, node);
}
}
void __visible
itersolve_set_trapq(struct stepper_kinematics *sk, struct trapq *tq)
{
sk->tq = tq;
}
void __visible
itersolve_set_stepcompress(struct stepper_kinematics *sk
, struct stepcompress *sc, double step_dist)
{
sk->sc = sc;
sk->step_dist = step_dist;
}
static double
itersolve_calc_position_from_coord(struct stepper_kinematics *sk
, double x, double y, double z)
{
struct move m;
memset(&m, 0, sizeof(m));
m.start_pos.x = x;
m.start_pos.y = y;
m.start_pos.z = z;
m.move_t = 1000.;
return sk->calc_position_cb(sk, &m, 500.);
}
void __visible
itersolve_set_position(struct stepper_kinematics *sk
, double x, double y, double z)
{
sk->commanded_pos = itersolve_calc_position_from_coord(sk, x, y, z);
}
double __visible
itersolve_get_commanded_pos(struct stepper_kinematics *sk)
{
return sk->commanded_pos;
}