klipper-dgus/scripts/graphstats.py

338 lines
12 KiB
Python
Raw Permalink Normal View History

#!/usr/bin/env python
# Script to parse a logging file, extract the stats, and graph them
#
# Copyright (C) 2016-2021 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import optparse, datetime
import matplotlib
MAXBANDWIDTH=25000.
MAXBUFFER=2.
STATS_INTERVAL=5.
TASK_MAX=0.0025
APPLY_PREFIX = [
'mcu_awake', 'mcu_task_avg', 'mcu_task_stddev', 'bytes_write',
'bytes_read', 'bytes_retransmit', 'freq', 'adj',
'target', 'temp', 'pwm'
]
def parse_log(logname, mcu):
if mcu is None:
mcu = "mcu"
mcu_prefix = mcu + ":"
apply_prefix = { p: 1 for p in APPLY_PREFIX }
f = open(logname, 'r')
out = []
for line in f:
parts = line.split()
if not parts or parts[0] not in ('Stats', 'INFO:root:Stats'):
#if parts and parts[0] == 'INFO:root:shutdown:':
# break
continue
prefix = ""
keyparts = {}
for p in parts[2:]:
if '=' not in p:
prefix = p
if prefix == mcu_prefix:
prefix = ''
continue
name, val = p.split('=', 1)
if name in apply_prefix:
name = prefix + name
keyparts[name] = val
if 'print_time' not in keyparts:
continue
keyparts['#sampletime'] = float(parts[1][:-1])
out.append(keyparts)
f.close()
return out
def setup_matplotlib(output_to_file):
global matplotlib
if output_to_file:
matplotlib.use('Agg')
import matplotlib.pyplot, matplotlib.dates, matplotlib.font_manager
import matplotlib.ticker
def find_print_restarts(data):
runoff_samples = {}
last_runoff_start = last_buffer_time = last_sampletime = 0.
last_print_stall = 0
for d in reversed(data):
# Check for buffer runoff
sampletime = d['#sampletime']
buffer_time = float(d.get('buffer_time', 0.))
if (last_runoff_start and last_sampletime - sampletime < 5
and buffer_time > last_buffer_time):
runoff_samples[last_runoff_start][1].append(sampletime)
elif buffer_time < 1.:
last_runoff_start = sampletime
runoff_samples[last_runoff_start] = [False, [sampletime]]
else:
last_runoff_start = 0.
last_buffer_time = buffer_time
last_sampletime = sampletime
# Check for print stall
print_stall = int(d['print_stall'])
if print_stall < last_print_stall:
if last_runoff_start:
runoff_samples[last_runoff_start][0] = True
last_print_stall = print_stall
sample_resets = {sampletime: 1 for stall, samples in runoff_samples.values()
for sampletime in samples if not stall}
return sample_resets
def plot_mcu(data, maxbw):
# Generate data for plot
basetime = lasttime = data[0]['#sampletime']
lastbw = float(data[0]['bytes_write']) + float(data[0]['bytes_retransmit'])
sample_resets = find_print_restarts(data)
times = []
bwdeltas = []
loads = []
awake = []
hostbuffers = []
for d in data:
st = d['#sampletime']
timedelta = st - lasttime
if timedelta <= 0.:
continue
bw = float(d['bytes_write']) + float(d['bytes_retransmit'])
if bw < lastbw:
lastbw = bw
continue
load = float(d['mcu_task_avg']) + 3*float(d['mcu_task_stddev'])
if st - basetime < 15.:
load = 0.
pt = float(d['print_time'])
hb = float(d['buffer_time'])
if hb >= MAXBUFFER or st in sample_resets:
hb = 0.
else:
hb = 100. * (MAXBUFFER - hb) / MAXBUFFER
hostbuffers.append(hb)
times.append(datetime.datetime.utcfromtimestamp(st))
bwdeltas.append(100. * (bw - lastbw) / (maxbw * timedelta))
loads.append(100. * load / TASK_MAX)
awake.append(100. * float(d.get('mcu_awake', 0.)) / STATS_INTERVAL)
lasttime = st
lastbw = bw
# Build plot
fig, ax1 = matplotlib.pyplot.subplots()
ax1.set_title("MCU bandwidth and load utilization")
ax1.set_xlabel('Time')
ax1.set_ylabel('Usage (%)')
ax1.plot_date(times, bwdeltas, 'g', label='Bandwidth', alpha=0.8)
ax1.plot_date(times, loads, 'r', label='MCU load', alpha=0.8)
ax1.plot_date(times, hostbuffers, 'c', label='Host buffer', alpha=0.8)
ax1.plot_date(times, awake, 'y', label='Awake time', alpha=0.6)
fontP = matplotlib.font_manager.FontProperties()
fontP.set_size('x-small')
ax1.legend(loc='best', prop=fontP)
ax1.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%H:%M'))
ax1.grid(True)
return fig
def plot_system(data):
# Generate data for plot
lasttime = data[0]['#sampletime']
lastcputime = float(data[0]['cputime'])
times = []
sysloads = []
cputimes = []
memavails = []
for d in data:
st = d['#sampletime']
timedelta = st - lasttime
if timedelta <= 0.:
continue
lasttime = st
times.append(datetime.datetime.utcfromtimestamp(st))
cputime = float(d['cputime'])
cpudelta = max(0., min(1.5, (cputime - lastcputime) / timedelta))
lastcputime = cputime
cputimes.append(cpudelta * 100.)
sysloads.append(float(d['sysload']) * 100.)
memavails.append(float(d['memavail']))
# Build plot
fig, ax1 = matplotlib.pyplot.subplots()
ax1.set_title("System load utilization")
ax1.set_xlabel('Time')
ax1.set_ylabel('Load (% of a core)')
ax1.plot_date(times, sysloads, '-', label='system load',
color='cyan', alpha=0.8)
ax1.plot_date(times, cputimes, '-', label='process time',
color='red', alpha=0.8)
ax2 = ax1.twinx()
ax2.set_ylabel('Available memory (KB)')
ax2.plot_date(times, memavails, '-', label='system memory',
color='yellow', alpha=0.3)
fontP = matplotlib.font_manager.FontProperties()
fontP.set_size('x-small')
ax1li, ax1la = ax1.get_legend_handles_labels()
ax2li, ax2la = ax2.get_legend_handles_labels()
ax1.legend(ax1li + ax2li, ax1la + ax2la, loc='best', prop=fontP)
ax1.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%H:%M'))
ax1.grid(True)
return fig
def plot_mcu_frequencies(data):
all_keys = {}
for d in data:
all_keys.update(d)
graph_keys = { key: ([], []) for key in all_keys
if (key in ("freq", "adj")
or (key.endswith(":freq") or key.endswith(":adj"))) }
for d in data:
st = datetime.datetime.utcfromtimestamp(d['#sampletime'])
for key, (times, values) in graph_keys.items():
val = d.get(key)
if val not in (None, '0', '1'):
times.append(st)
values.append(float(val))
est_mhz = { key: round((sum(values)/len(values)) / 1000000.)
for key, (times, values) in graph_keys.items() }
# Build plot
fig, ax1 = matplotlib.pyplot.subplots()
ax1.set_title("MCU frequencies")
ax1.set_xlabel('Time')
ax1.set_ylabel('Microsecond deviation')
for key in sorted(graph_keys):
times, values = graph_keys[key]
mhz = est_mhz[key]
label = "%s(%dMhz)" % (key, mhz)
hz = mhz * 1000000.
ax1.plot_date(times, [(v - hz)/mhz for v in values], '.', label=label)
fontP = matplotlib.font_manager.FontProperties()
fontP.set_size('x-small')
ax1.legend(loc='best', prop=fontP)
ax1.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%H:%M'))
ax1.yaxis.set_major_formatter(matplotlib.ticker.FormatStrFormatter('%d'))
ax1.grid(True)
return fig
def plot_mcu_frequency(data, mcu):
all_keys = {}
for d in data:
all_keys.update(d)
graph_keys = { key: ([], []) for key in all_keys
if key in ("freq", "adj") }
for d in data:
st = datetime.datetime.utcfromtimestamp(d['#sampletime'])
for key, (times, values) in graph_keys.items():
val = d.get(key)
if val not in (None, '0', '1'):
times.append(st)
values.append(float(val))
# Build plot
fig, ax1 = matplotlib.pyplot.subplots()
ax1.set_title("MCU '%s' frequency" % (mcu,))
ax1.set_xlabel('Time')
ax1.set_ylabel('Frequency')
for key in sorted(graph_keys):
times, values = graph_keys[key]
ax1.plot_date(times, values, '.', label=key)
fontP = matplotlib.font_manager.FontProperties()
fontP.set_size('x-small')
ax1.legend(loc='best', prop=fontP)
ax1.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%H:%M'))
ax1.yaxis.set_major_formatter(matplotlib.ticker.FormatStrFormatter('%d'))
ax1.grid(True)
return fig
def plot_temperature(data, heaters):
fig, ax1 = matplotlib.pyplot.subplots()
ax2 = ax1.twinx()
for heater in heaters.split(','):
heater = heater.strip()
temp_key = heater + ':' + 'temp'
target_key = heater + ':' + 'target'
pwm_key = heater + ':' + 'pwm'
times = []
temps = []
targets = []
pwm = []
for d in data:
temp = d.get(temp_key)
if temp is None:
continue
times.append(datetime.datetime.utcfromtimestamp(d['#sampletime']))
temps.append(float(temp))
pwm.append(float(d.get(pwm_key, 0.)))
targets.append(float(d.get(target_key, 0.)))
ax1.plot_date(times, temps, '-', label='%s temp' % (heater,), alpha=0.8)
if any(targets):
label = '%s target' % (heater,)
ax1.plot_date(times, targets, '-', label=label, alpha=0.3)
if any(pwm):
label = '%s pwm' % (heater,)
ax2.plot_date(times, pwm, '-', label=label, alpha=0.2)
# Build plot
ax1.set_title("Temperature of %s" % (heaters,))
ax1.set_xlabel('Time')
ax1.set_ylabel('Temperature')
ax2.set_ylabel('pwm')
fontP = matplotlib.font_manager.FontProperties()
fontP.set_size('x-small')
ax1li, ax1la = ax1.get_legend_handles_labels()
ax2li, ax2la = ax2.get_legend_handles_labels()
ax1.legend(ax1li + ax2li, ax1la + ax2la, loc='best', prop=fontP)
ax1.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%H:%M'))
ax1.grid(True)
return fig
def main():
# Parse command-line arguments
usage = "%prog [options] <logfile>"
opts = optparse.OptionParser(usage)
opts.add_option("-f", "--frequency", action="store_true",
help="graph mcu frequency")
opts.add_option("-s", "--system", action="store_true",
help="graph system load")
opts.add_option("-o", "--output", type="string", dest="output",
default=None, help="filename of output graph")
opts.add_option("-t", "--temperature", type="string", dest="heater",
default=None, help="graph heater temperature")
opts.add_option("-m", "--mcu", type="string", dest="mcu", default=None,
help="limit stats to the given mcu")
options, args = opts.parse_args()
if len(args) != 1:
opts.error("Incorrect number of arguments")
logname = args[0]
# Parse data
data = parse_log(logname, options.mcu)
if not data:
return
# Draw graph
setup_matplotlib(options.output is not None)
if options.heater is not None:
fig = plot_temperature(data, options.heater)
elif options.frequency:
if options.mcu is not None:
fig = plot_mcu_frequency(data, options.mcu)
else:
fig = plot_mcu_frequencies(data)
elif options.system:
fig = plot_system(data)
else:
fig = plot_mcu(data, MAXBANDWIDTH)
# Show graph
if options.output is None:
matplotlib.pyplot.show()
else:
fig.set_size_inches(8, 6)
fig.savefig(options.output)
if __name__ == '__main__':
main()