2021-08-02 18:36:38 +02:00
|
|
|
#!/usr/bin/env python
|
2020-07-20 02:23:02 +02:00
|
|
|
# Script to plot input shapers
|
|
|
|
#
|
|
|
|
# Copyright (C) 2020 Kevin O'Connor <kevin@koconnor.net>
|
|
|
|
# Copyright (C) 2020 Dmitry Butyugin <dmbutyugin@google.com>
|
|
|
|
#
|
|
|
|
# This file may be distributed under the terms of the GNU GPLv3 license.
|
|
|
|
import optparse, math
|
|
|
|
import matplotlib
|
|
|
|
|
|
|
|
# A set of damping ratios to calculate shaper response for
|
|
|
|
DAMPING_RATIOS=[0.05, 0.1, 0.2]
|
|
|
|
|
|
|
|
# Parameters of the input shaper
|
|
|
|
SHAPER_FREQ=50.0
|
|
|
|
SHAPER_DAMPING_RATIO=0.1
|
|
|
|
|
|
|
|
# Simulate input shaping of step function for these true resonance frequency
|
|
|
|
# and damping ratio
|
|
|
|
STEP_SIMULATION_RESONANCE_FREQ=60.
|
|
|
|
STEP_SIMULATION_DAMPING_RATIO=0.15
|
|
|
|
|
|
|
|
# If set, defines which range of frequencies to plot shaper frequency responce
|
|
|
|
PLOT_FREQ_RANGE = [] # If empty, will be automatically determined
|
|
|
|
#PLOT_FREQ_RANGE = [10., 100.]
|
|
|
|
|
|
|
|
PLOT_FREQ_STEP = .01
|
|
|
|
|
|
|
|
######################################################################
|
|
|
|
# Input shapers
|
|
|
|
######################################################################
|
|
|
|
|
|
|
|
def get_zv_shaper():
|
|
|
|
df = math.sqrt(1. - SHAPER_DAMPING_RATIO**2)
|
|
|
|
K = math.exp(-SHAPER_DAMPING_RATIO * math.pi / df)
|
|
|
|
t_d = 1. / (SHAPER_FREQ * df)
|
|
|
|
A = [1., K]
|
|
|
|
T = [0., .5*t_d]
|
|
|
|
return (A, T, "ZV")
|
|
|
|
|
|
|
|
def get_zvd_shaper():
|
|
|
|
df = math.sqrt(1. - SHAPER_DAMPING_RATIO**2)
|
|
|
|
K = math.exp(-SHAPER_DAMPING_RATIO * math.pi / df)
|
|
|
|
t_d = 1. / (SHAPER_FREQ * df)
|
|
|
|
A = [1., 2.*K, K**2]
|
|
|
|
T = [0., .5*t_d, t_d]
|
|
|
|
return (A, T, "ZVD")
|
|
|
|
|
|
|
|
def get_mzv_shaper():
|
|
|
|
df = math.sqrt(1. - SHAPER_DAMPING_RATIO**2)
|
|
|
|
K = math.exp(-.75 * SHAPER_DAMPING_RATIO * math.pi / df)
|
|
|
|
t_d = 1. / (SHAPER_FREQ * df)
|
|
|
|
|
|
|
|
a1 = 1. - 1. / math.sqrt(2.)
|
|
|
|
a2 = (math.sqrt(2.) - 1.) * K
|
|
|
|
a3 = a1 * K * K
|
|
|
|
|
|
|
|
A = [a1, a2, a3]
|
|
|
|
T = [0., .375*t_d, .75*t_d]
|
|
|
|
return (A, T, "MZV")
|
|
|
|
|
|
|
|
def get_ei_shaper():
|
|
|
|
v_tol = 0.05 # vibration tolerance
|
|
|
|
df = math.sqrt(1. - SHAPER_DAMPING_RATIO**2)
|
|
|
|
K = math.exp(-SHAPER_DAMPING_RATIO * math.pi / df)
|
|
|
|
t_d = 1. / (SHAPER_FREQ * df)
|
|
|
|
|
|
|
|
a1 = .25 * (1. + v_tol)
|
|
|
|
a2 = .5 * (1. - v_tol) * K
|
|
|
|
a3 = a1 * K * K
|
|
|
|
|
|
|
|
A = [a1, a2, a3]
|
|
|
|
T = [0., .5*t_d, t_d]
|
|
|
|
return (A, T, "EI")
|
|
|
|
|
|
|
|
def get_2hump_ei_shaper():
|
|
|
|
v_tol = 0.05 # vibration tolerance
|
|
|
|
df = math.sqrt(1. - SHAPER_DAMPING_RATIO**2)
|
|
|
|
K = math.exp(-SHAPER_DAMPING_RATIO * math.pi / df)
|
|
|
|
t_d = 1. / (SHAPER_FREQ * df)
|
|
|
|
|
|
|
|
V2 = v_tol**2
|
|
|
|
X = pow(V2 * (math.sqrt(1. - V2) + 1.), 1./3.)
|
|
|
|
a1 = (3.*X*X + 2.*X + 3.*V2) / (16.*X)
|
|
|
|
a2 = (.5 - a1) * K
|
|
|
|
a3 = a2 * K
|
|
|
|
a4 = a1 * K * K * K
|
|
|
|
|
|
|
|
A = [a1, a2, a3, a4]
|
|
|
|
T = [0., .5*t_d, t_d, 1.5*t_d]
|
|
|
|
return (A, T, "2-hump EI")
|
|
|
|
|
|
|
|
def get_3hump_ei_shaper():
|
|
|
|
v_tol = 0.05 # vibration tolerance
|
|
|
|
df = math.sqrt(1. - SHAPER_DAMPING_RATIO**2)
|
|
|
|
K = math.exp(-SHAPER_DAMPING_RATIO * math.pi / df)
|
|
|
|
t_d = 1. / (SHAPER_FREQ * df)
|
|
|
|
|
|
|
|
K2 = K*K
|
|
|
|
a1 = 0.0625 * (1. + 3. * v_tol + 2. * math.sqrt(2. * (v_tol + 1.) * v_tol))
|
|
|
|
a2 = 0.25 * (1. - v_tol) * K
|
|
|
|
a3 = (0.5 * (1. + v_tol) - 2. * a1) * K2
|
|
|
|
a4 = a2 * K2
|
|
|
|
a5 = a1 * K2 * K2
|
|
|
|
|
|
|
|
A = [a1, a2, a3, a4, a5]
|
|
|
|
T = [0., .5*t_d, t_d, 1.5*t_d, 2.*t_d]
|
|
|
|
return (A, T, "3-hump EI")
|
|
|
|
|
|
|
|
|
|
|
|
def estimate_shaper(shaper, freq, damping_ratio):
|
|
|
|
A, T, _ = shaper
|
|
|
|
n = len(T)
|
|
|
|
inv_D = 1. / sum(A)
|
|
|
|
omega = 2. * math.pi * freq
|
|
|
|
damping = damping_ratio * omega
|
|
|
|
omega_d = omega * math.sqrt(1. - damping_ratio**2)
|
|
|
|
S = C = 0
|
|
|
|
for i in range(n):
|
|
|
|
W = A[i] * math.exp(-damping * (T[-1] - T[i]))
|
|
|
|
S += W * math.sin(omega_d * T[i])
|
|
|
|
C += W * math.cos(omega_d * T[i])
|
|
|
|
return math.sqrt(S*S + C*C) * inv_D
|
|
|
|
|
|
|
|
def shift_pulses(shaper):
|
|
|
|
A, T, name = shaper
|
|
|
|
n = len(T)
|
|
|
|
ts = sum([A[i] * T[i] for i in range(n)]) / sum(A)
|
|
|
|
for i in range(n):
|
|
|
|
T[i] -= ts
|
|
|
|
|
|
|
|
# Shaper selection
|
|
|
|
get_shaper = get_ei_shaper
|
|
|
|
|
|
|
|
|
|
|
|
######################################################################
|
|
|
|
# Plotting and startup
|
|
|
|
######################################################################
|
|
|
|
|
|
|
|
def bisect(func, left, right):
|
|
|
|
lhs_sign = math.copysign(1., func(left))
|
|
|
|
while right-left > 1e-8:
|
|
|
|
mid = .5 * (left + right)
|
|
|
|
val = func(mid)
|
|
|
|
if math.copysign(1., val) == lhs_sign:
|
|
|
|
left = mid
|
|
|
|
else:
|
|
|
|
right = mid
|
|
|
|
return .5 * (left + right)
|
|
|
|
|
|
|
|
def find_shaper_plot_range(shaper, vib_tol):
|
|
|
|
def eval_shaper(freq):
|
|
|
|
return estimate_shaper(shaper, freq, DAMPING_RATIOS[0]) - vib_tol
|
|
|
|
if not PLOT_FREQ_RANGE:
|
|
|
|
left = bisect(eval_shaper, 0., SHAPER_FREQ)
|
|
|
|
right = bisect(eval_shaper, SHAPER_FREQ, 2.4 * SHAPER_FREQ)
|
|
|
|
else:
|
|
|
|
left, right = PLOT_FREQ_RANGE
|
|
|
|
return (left, right)
|
|
|
|
|
|
|
|
def gen_shaper_response(shaper):
|
|
|
|
# Calculate shaper vibration responce on a range of requencies
|
|
|
|
response = []
|
|
|
|
freqs = []
|
|
|
|
freq, freq_end = find_shaper_plot_range(shaper, vib_tol=0.25)
|
|
|
|
while freq <= freq_end:
|
|
|
|
vals = []
|
|
|
|
for damping_ratio in DAMPING_RATIOS:
|
|
|
|
vals.append(estimate_shaper(shaper, freq, damping_ratio))
|
|
|
|
response.append(vals)
|
|
|
|
freqs.append(freq)
|
|
|
|
freq += PLOT_FREQ_STEP
|
|
|
|
legend = ['damping ratio = %.3f' % d_r for d_r in DAMPING_RATIOS]
|
|
|
|
return freqs, response, legend
|
|
|
|
|
|
|
|
def gen_shaped_step_function(shaper):
|
|
|
|
# Calculate shaping of a step function
|
|
|
|
A, T, _ = shaper
|
|
|
|
inv_D = 1. / sum(A)
|
|
|
|
n = len(T)
|
|
|
|
|
|
|
|
omega = 2. * math.pi * STEP_SIMULATION_RESONANCE_FREQ
|
|
|
|
damping = STEP_SIMULATION_DAMPING_RATIO * omega
|
|
|
|
omega_d = omega * math.sqrt(1. - STEP_SIMULATION_DAMPING_RATIO**2)
|
|
|
|
phase = math.acos(STEP_SIMULATION_DAMPING_RATIO)
|
|
|
|
|
|
|
|
t_start = T[0] - .5 / SHAPER_FREQ
|
|
|
|
t_end = T[-1] + 1.5 / STEP_SIMULATION_RESONANCE_FREQ
|
|
|
|
result = []
|
|
|
|
time = []
|
|
|
|
t = t_start
|
|
|
|
|
|
|
|
def step_response(t):
|
|
|
|
if t < 0.:
|
|
|
|
return 0.
|
|
|
|
return 1. - math.exp(-damping * t) * math.sin(omega_d * t
|
|
|
|
+ phase) / math.sin(phase)
|
|
|
|
|
|
|
|
while t <= t_end:
|
|
|
|
val = []
|
|
|
|
val.append(1. if t >= 0. else 0.)
|
|
|
|
#val.append(step_response(t))
|
|
|
|
|
|
|
|
commanded = 0.
|
|
|
|
response = 0.
|
|
|
|
S = C = 0
|
|
|
|
for i in range(n):
|
|
|
|
if t < T[i]:
|
|
|
|
continue
|
|
|
|
commanded += A[i]
|
|
|
|
response += A[i] * step_response(t - T[i])
|
|
|
|
val.append(commanded * inv_D)
|
|
|
|
val.append(response * inv_D)
|
|
|
|
|
|
|
|
result.append(val)
|
|
|
|
time.append(t)
|
|
|
|
t += .01 / SHAPER_FREQ
|
|
|
|
legend = ['step', 'shaper commanded', 'system response']
|
|
|
|
return time, result, legend
|
|
|
|
|
|
|
|
|
|
|
|
def plot_shaper(shaper):
|
|
|
|
shift_pulses(shaper)
|
|
|
|
freqs, response, response_legend = gen_shaper_response(shaper)
|
|
|
|
time, step_vals, step_legend = gen_shaped_step_function(shaper)
|
|
|
|
|
|
|
|
fig, (ax1, ax2) = matplotlib.pyplot.subplots(nrows=2, figsize=(10,9))
|
|
|
|
ax1.set_title("Vibration response simulation for shaper '%s',\n"
|
|
|
|
"shaper_freq=%.1f Hz, damping_ratio=%.3f"
|
|
|
|
% (shaper[-1], SHAPER_FREQ, SHAPER_DAMPING_RATIO))
|
|
|
|
ax1.plot(freqs, response)
|
|
|
|
ax1.set_ylim(bottom=0.)
|
|
|
|
fontP = matplotlib.font_manager.FontProperties()
|
|
|
|
fontP.set_size('x-small')
|
|
|
|
ax1.legend(response_legend, loc='best', prop=fontP)
|
|
|
|
ax1.set_xlabel('Resonance frequency, Hz')
|
|
|
|
ax1.set_ylabel('Remaining vibrations, ratio')
|
|
|
|
ax1.xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
|
|
|
|
ax1.yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
|
|
|
|
ax1.grid(which='major', color='grey')
|
|
|
|
ax1.grid(which='minor', color='lightgrey')
|
|
|
|
|
|
|
|
ax2.set_title("Unit step input, resonance frequency=%.1f Hz, "
|
|
|
|
"damping ratio=%.3f" % (STEP_SIMULATION_RESONANCE_FREQ,
|
|
|
|
STEP_SIMULATION_DAMPING_RATIO))
|
|
|
|
ax2.plot(time, step_vals)
|
|
|
|
ax2.legend(step_legend, loc='best', prop=fontP)
|
|
|
|
ax2.set_xlabel('Time, sec')
|
|
|
|
ax2.set_ylabel('Amplitude')
|
|
|
|
ax2.grid()
|
|
|
|
fig.tight_layout()
|
|
|
|
return fig
|
|
|
|
|
|
|
|
def setup_matplotlib(output_to_file):
|
|
|
|
global matplotlib
|
|
|
|
if output_to_file:
|
|
|
|
matplotlib.use('Agg')
|
|
|
|
import matplotlib.pyplot, matplotlib.dates, matplotlib.font_manager
|
|
|
|
import matplotlib.ticker
|
|
|
|
|
|
|
|
def main():
|
|
|
|
# Parse command-line arguments
|
|
|
|
usage = "%prog [options]"
|
|
|
|
opts = optparse.OptionParser(usage)
|
|
|
|
opts.add_option("-o", "--output", type="string", dest="output",
|
|
|
|
default=None, help="filename of output graph")
|
|
|
|
options, args = opts.parse_args()
|
|
|
|
if len(args) != 0:
|
|
|
|
opts.error("Incorrect number of arguments")
|
|
|
|
|
|
|
|
# Draw graph
|
|
|
|
setup_matplotlib(options.output is not None)
|
|
|
|
fig = plot_shaper(get_shaper())
|
|
|
|
|
|
|
|
# Show graph
|
|
|
|
if options.output is None:
|
|
|
|
matplotlib.pyplot.show()
|
|
|
|
else:
|
|
|
|
fig.set_size_inches(8, 6)
|
|
|
|
fig.savefig(options.output)
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|